python实现超大图像的二值化方法】的更多相关文章

一,分块处理超大图像的二值化问题   (1) 全局阈值处理  (2) 局部阈值 二,空白区域过滤 三,先缩放进行二值化,然后还原大小 np.mean() 返回数组元素的平均值 np.std() 返回数组元素的标准差 一,分块处理超大图像的二值化问题  (1) 全局阈值处理   (2) 局部阈值 1 import cv2 as cv 2 import numpy as np 3 4 """ 5 def big_image_binary(image): 6 print(image…
图像的二值化: 与边缘检测相比,轮廓检测有时能更好的反映图像的内容.而要对图像进行轮廓检测,则必须要先对图像进行二值化,图像的二值化就是将图像上的像素点的灰度值设置为0或255,这样将使整个图像呈现出明显的黑白效果.在数字图像处理中,二值图像占有非常重要的地位,图像的二值化使图像中数据量大为减少,从而能凸显出目标的轮廓. 下面就介绍OpenCV中对图像进行二值化的关键函数——cvThreshold(). 函数功能:采用Canny方法对图像进行边缘检测函数原型:void cvThreshold( …
函数功能:采用Canny方法对图像进行边缘检测 函数原型: void cvThreshold( const CvArr* src, CvArr* dst, double threshold, double max_value, int threshold_type ); 函数说明: 第一个参数表示输入图像,必须为单通道灰度图. 第二个参数表示输出的边缘图像,为单通道黑白图. 第三个参数表示阈值 第四个参数表示最大值. 第五个参数表示运算方法. 在OpenCV的imgproc\types_c.h中…
Kittler二值化方法,是一种经典的基于直方图的二值化方法.由J. Kittler在1986年发表的论文“Minimum Error Thresholding”提出.论文是对贝叶斯最小错误阈值的准则做了改进,使得计算更加的简单和有效. Divijver 和 Kittler的贝叶斯最小错误准则为: 因为需要求解二次方程和对正态分布的均值和方差进行估计,Nagawa 和 Rosenfeld提出了求解和估计的方法(Some Experiments on Variable Thresholding).…
二值化 hreshold Applies a fixed-level threshold to each array element. C++: double threshold(InputArray src, OutputArray dst, double thresh, doublemaxval, int type) Python: cv2.threshold(src, thresh, maxval, type[, dst]) → retval, dsthighlight=cvthresho…
书里的解释: 其他的没找到什么资料,直接参考百度百科 https://baike.baidu.com/item/%E5%9B%BE%E5%83%8F%E4%BA%8C%E5%80%BC%E5%8C%96/1748870?fr=aladdin#2 具体是先实现灰度化,然后实现二值化. 里面提到了opencv里的两个接口 1.Imgproc.threshold(Mat src, Mat dst, double thresh, double maxval, int type) 参数:src 原图dst…
*分块 *全局阈值 VS 局部阈值 import cv2 as cv import numpy as np def big_image_binary(image): print(image.shape) cw = 213 ch = 547 h,w = image.shape[:2] gray = cv.cvtColor(image,cv.COLOR_BGR2GRAY) for row in range(0,h,ch): for col in range(0,w,cw): roi = gray[r…
#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; int main() { const char* inputImage = "33.jpg"; Mat img; img = imread(inputImage, ); if (img.empty()) { cout << "Could not read inp…
http://blog.csdn.net/johinieli/article/details/69389980…
超大图像的二值化方法 1.可以采用分块方法, 2.先缩放处理就行二值化,然后还原大小 一:分块处理超大图像的二值化问题 def big_image_binary(image): print(image.shape) #(, , ) #超大图像,屏幕无法显示完整 cw,ch = , h,w = image.shape[:] gray = cv.cvtColor(image,cv.COLOR_RGB2GRAY) #要二值化图像,要先进行灰度化处理 ,h,ch): ,w,cw): roi = gray…