R语言--时间序列分析步骤】的更多相关文章

大白. (1)根据趋势定差分 plot(lostjob,type="b") 查看图像总体趋势,确定如何差分 df1 = diff(lostjob)  d=1阶差分 s4_df1=diff(df1,4)  对d=1阶差分结果进行k=4步(季节)差分 (2)根据所定差分检验平稳 adfTest(s4_df1,lag=6) 对差分结果进行平稳性检验 (3)ARIMA(p,d,q)中的pq定阶 acf(s4_df1) pacf(s4_df1) (4)建立arima模型 ans=arima(lo…
昨天刚刚把导入数据弄好,今天迫不及待试试怎么做预测,网上找的帖子跟着弄的. 第一步.对原始数据进行分析 一.ARIMA预测时间序列 指数平滑法对于预测来说是非常有帮助的,而且它对时间序列上面连续的值之间相关性没有要求.但是,如果你想使用指数平滑法计算出预测区间,那么预测误差必须是不相关的, 而且必须是服从零均值. 方差不变的正态分布.即使指数平滑法对时间序列连续数值之间相关性没有要求,在某种情况下,我们可以通过考虑数据之间的相关性来创建更好的预测模型.自回归移动平均模型( ARIMA) 包含一个…
 1.安装JDK 2.在R下运行install.packages("rJava") 2.环境变量设置 CLASSPATH=xxx\R-xxx\library\rJava\jri PATH=xxx\R-xxx\bin\x64 R_HOME=xxx\R-xxx 3.拷贝xxx\R-xxx\library\rJava\jri文件夹下的3个文件放置到JDK的文件夹下 JRIEngine.jar JRI.jar REngine.jar 放到xxx\Java\jdk1.7.0_05\lib以下…
R语言实现金融数据的时间序列分析及建模 一 移动平均    移动平均能消除数据中的季节变动和不规则变动.若序列中存在周期变动,则通常以周期为移动平均项数.移动平均法可以通过数据显示出数据长期趋势的变动规律.   R可用filter()函数做移动平均.用法:filter(data,filter,sides) 1.简单移动平均   简单移动平均就是将n个观测值的平均数作为第(n 1)/2个的拟合值.当n为偶数时,需进行二次移动平均.简单移动平均假设序列长期趋势的斜率不变.    以我国1992到20…
"春节假期是难得的读书充电的时间."--来自某boss.假期能写多少算多少,一个是题目中的这本书,另一个是<python核心编程>中的高级部分,再一个是拖着的<算法导论>. ------------------------------------------------------ 一.时间序列研究目的主要有两个:认识产生观测序列的随机机制,即建立数据生成模型:基于序列的历史数据,也许还要考虑其他相关序列或者因素,对序列未来的可能取值给出预测或者预报.通常我们不…
数据来源: R语言自带 Nile 数据集(尼罗河流量) 分析工具:R-3.5.0 & Rstudio-1.1.453 #清理环境,加载包 rm(list=ls()) library(forecast) library(tseries) #趋势查看 plot(Nile) #平稳性检验 #自相关图 acf(Nile) #偏相关图 pacf(Nile) #也可以直接用tsdisplay查看 tsdisplay(Nile) #单位根检验 adf.test(Nile) 从自相关图上看,自相关系数没有快速衰…
R语言真是博大精深 方法一 Acf(gold[,2], type = "correlation",lag.max = 100) Acf(gold[,2], type = "partial") 方法二 library(ggfortify) autoplot(acf(gold[,2], plot = FALSE)) 方法三 bacf <- acf(gold[, 2], plot = FALSE) bacfdf <- with(bacf, data.frame…
简介 在商业应用中,时间是最重要的因素,能够提升成功率.然而绝大多数公司很难跟上时间的脚步.但是随着技术的发展,出现了很多有效的方法,能够让我们预测未来.不要担心,本文并不会讨论时间机器,讨论的都是很实用的东西. 本文将要讨论关于预测的方法.有一种预测是跟时间相关的,而这种处理与时间相关数据的方法叫做时间序列模型.这个模型能够在与时间相关的数据中,寻到一些隐藏的信息来辅助决策. 当我们处理时序序列数据的时候,时间序列模型是非常有用的模型.大多数公司都是基于时间序列数据来分析第二年的销售量,网站流…
时间序列分析之ARIMA模型预测__R篇 之前一直用SAS做ARIMA模型预测,今天尝试用了一下R,发现灵活度更高,结果输出也更直观.现在记录一下如何用R分析ARIMA模型. 1. 处理数据 1.1. 导入forecast包 forecast包是一个封装的ARIMA统计软件包,在默认情况下,R没有预装forecast包,因此需要先安装该包 > install.packages("forecast') 导入依赖包zoo,再导入forecast包 > library("zoo&…
<时间序列分析——基于R>王燕,读书笔记 笔记: 一.检验: 1.平稳性检验: 图检验方法:     时序图检验:该序列有明显的趋势性或周期性,则不是平稳序列     自相关图检验:(acf函数)平稳序列具有短期相关性,即随着延迟期数k的增加,平稳序列的自相关系数ρ会很快地衰减向0(指数级衰减),反之非平稳序列衰减速度会比较慢   构造检验统计量进行假设检验:单位根检验adfTest()——fUnitRoots包 2.纯随机性检验.白噪声检验(Box.test(data,type,lag=n)…