【刷题】BZOJ 5418 [Noi2018]屠龙勇士】的更多相关文章

www.lydsy.com/JudgeOnline/upload/noi2018day2.pdf Solution 将攻击的式子列出来,\(atk \times x-p \times y=a_i\) 这不就是个扩欧的裸式子嘛,求出 \(x\) 的解的式子 \(x=x_0+r \times dis\),其中 \(r\) 为任意整数,\(dis\) 为不定方程解的间隔 上面的式子发现又是一个同余方程 对于每一条龙都是一个同余方程,那么就是要解一个同余方程组的最小解 用扩展CRT就好了 #includ…
题解:求解形如 $A[i]ans\equiv b[i](mod$ $p[i])$ 的 $x$ 的最小正整数解. 考虑只有一个等式,那么可以直接化成 $exgcd$ 的形式:$A[i]ans+p[i]y=b[i],$ 直接求 $ans$ 的正整数解即可. 增量 $M$ 为 $\frac{p[i]}{gcd(A[i],p[i])}$ 那如果有多个式子呢 $?$假设前面的式子得到的最小解为 $ans,$ 增量为 $M.$ 考虑将当前求出的 $ans',M'$ 与 $ans$ 合并. 即 $ans+M\…
[NOI2018]屠龙勇士 描述 小 D 最近在网上发现了一款小游戏.游戏的规则如下: 游戏的目标是按照编号 1∼n 顺序杀掉 n 条巨龙,每条巨龙拥有一个初始的生命值 ai .同时每条巨龙拥有恢复能力,当其使用恢复能力时,它的生命值就会每次增加 pi,直至生命值非负.只有在攻击结束后且当生命值恰好为 0 时它才会死去. 游戏开始时玩家拥有 m 把攻击力已知的剑,每次面对巨龙时,玩家只能选择一把剑,当杀死巨龙后这把剑就会消失,但作为奖励,玩家会获得全新的一把剑. 小 D 觉得这款游戏十分无聊,但…
题目链接: [Noi2018]屠龙勇士 题目大意:有$n$条龙和初始$m$个武器,每个武器有一个攻击力$t_{i}$,每条龙有一个初始血量$a_{i}$和一个回复值$p_{i}$(即只要血量为负数就一直回复$p_{i}$的血量,只有在攻击后会回血),杀死一条龙当且仅当攻击结束后或回复血量之后血量为$0$,杀死一条龙会获得一个新的武器.现在要求对每条龙攻击固定次数$x$求出最小的$x$,使所有龙都能被杀死. 因为每次选择的武器是固定的,所以只要用$multiset$存当前剩下的武器然后每次按题目规…
P4774 [NOI2018]屠龙勇士 先平衡树跑出打每条龙的atk t[] 然后每条龙有\(xt \equiv a[i](\text{mod }p[i])\) 就是\(xt+kp[i]=a[i]\) 求出一个满足条件的\(x_0\),通解是\(x=x_0+k*\text{gcd}(t,p[i])\) 就是\(x \equiv x_0 (\text{mod }\text{gcd}(t,p[i]))\) 然后就有n个这样的式子,用excrt,合并方程 excrt懒得写了 // luogu-judg…
洛谷题目链接:[NOI2018]屠龙勇士 因为markdown复制过来有点炸格式,所以看题目请戳上面. 题解: 因为杀死一条龙的条件是在攻击\(x\)次,龙恢复\(y\)次血量\((y\in N^{*})\)后龙的血量恰好为\(0\).那么根据题意我们可以列出方程: \[atk_i*x\equiv hp_i(mod \ p_i)\] 这个形式是不是很像中国剩余定理的形式:\(x\equiv b_i(mod \ a_i)\). 事实上我们可以直接将这个方程看做一个同余方程,即\[atk_i*x+p…
BZOJ_5418_[Noi2018]屠龙勇士_exgcd+excrt Description www.lydsy.com/JudgeOnline/upload/noi2018day2.pdf 每次用哪吧剑显然用个set就搞定了. 对于每头龙,生命值ai,回血pi,剑的攻击力为atk,打的次数为ans. 显然有ans*atk-ai>=0&&pi|ans*atk-ai. ans*atk+pi*y=ai (y<=0). 要求y<=0的前提下ans尽量的小,是一个ax+by=n…
链接:P4774 前言: 交了18遍最后发现是多组数据没清空/ll 题意: 其实就是个扩中. 分析过程: 首先发现根据题目描述的选择剑的方式,每条龙对应的剑都是固定的,有查询前驱,后继(在该数不存在前驱时,最小值即为后继),和插入,删除操作,所以想到平衡树维护每条龙的剑的攻击力,记为b[i].建议使用非旋treap,非常之好写. 根据题目描述,a[i]为每条龙生命值,p[i]为每条龙回复量.发现能够击杀这条龙的条件可以列成一个方程: \(xb[i]-yp[i]=a[i]\) \(x\) 为攻击次…
题目链接: 洛谷 BZOJ LOJ 题目大意:这么长的题面,就饶了我吧emmm 这题第一眼看上去没法列出同余方程组.为什么?好像不知道用哪把剑杀哪条龙…… 仔细一看,要按顺序杀龙,所以获得的剑出现的顺序也是固定的. 那么如果能把所有龙杀死,就能模拟出哪把剑杀那条龙了. (以下设所有除 $n,m$ 外的数的最大值为 $v$) $O(nm)$? 不,发现这里用剑的限制实际上是给出一个上界,来用lower_bound的. 插入也不要太暴力.我们想到什么?手写平衡树multiset! 这一部分复杂度是…
好久没写了,写一篇凑个数. 题目分析: 这题不难想,讲一下中国剩余定理怎么扩展. 考虑$$\left\{\begin{matrix}x \equiv a\pmod{b}\\ x \equiv c\pmod{d}\end{matrix}\right.$$ 不难发现需要满足$gcd(b,d)|(c-a)$才有解. 结合后的模数一定是$lcm(b,d)$.然后扩展gcd合并就行了. 中间过程会超过$10^18$,需要快速乘. 代码: #include<bits/stdc++.h> using nam…