版权声明:本文出自汪磊的博客,未经作者允许禁止转载. 近期忙着新版本的开发,此外正在回顾C语言,大部分时间没放在数据结构与算法的整理上,所以更新有点慢了,不过既然写了就肯定尽力将这部分完全整理好分享出来. 言归正传,开启本篇的正文. 一.什么是赫夫曼树 给定n个权值作为n个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree).哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近. 以上来自百度百科,相信完全不了解的同学看…
最终结果哈夫曼树,如图所示: 直接上代码: public class HuffmanCode { public static void main(String[] args) { //获取哈夫曼树并显示 Hnode root = createHuffmanTree(createNodes()); root.beforePrint(); System.out.println("===================="); //从哈夫曼树中读取 哈夫曼编码 getHuffmanCode(…
参考资料 <算法(java)>                           — — Robert Sedgewick, Kevin Wayne <数据结构>                                  — — 严蔚敏   赫夫曼树的概念 要了解赫夫曼树,我们要首先从扩充二叉树说起 二叉树结点的度 结点的度指的是二叉树结点的分支数目, 如果某个结点没有孩子结点,即没有分支,那么它的度是0:如果有一个孩子结点, 那么它的度数是1:如果既有左孩子也有右孩子,…
Java数据结构和算法(四)赫夫曼树 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 赫夫曼树又称为最优二叉树,赫夫曼树的一个最主要的应用就是赫夫曼编码. 一.赫夫曼编码 can you can a can as a can canner can a can. 1.1 定长编码 99 97 110 32 121 111 117 32 99 97 110 32 97 32 99 97 110 32 97 115 32 97…
一,介绍 1)构造赫夫曼树的算法是一个贪心算法,贪心的地方在于:总是选取当前频率(权值)最低的两个结点来进行合并,构造新结点. 2)使用最小堆来选取频率最小的节点,有助于提高算法效率,因为要选频率最低的,要么用排序,要么用堆.用堆的话,出堆的复杂度为O(logN),而向堆中插入一个元素的平均时间复杂度为O(1),在构建赫夫曼树的过程中,新生成的结点需要插入到原来的队列中,故用堆来维持这种顺序比排序算法要高效地多. 二,赫夫曼算法分析 ①用到的数据结构分析 首先需要构造一棵赫夫曼树,因此需要二叉链…
赫夫曼(Huffman)树,由发明它的人物命名,又称最优树,是一类带权路径最短的二叉树,主要用于数据压缩传输. 赫夫曼树的构造过程相对比较简单,要理解赫夫曼数,要先了解赫夫曼编码. 对一组出现频率不同的字符进行01编码,如果设计等长的编码方法,不会出现混淆的方法,根据规定长度的编码进行翻译,有且只有一个字符与之对应.比如设计两位编码的方法,A,B,C,D字符可以用00-11来表示,接收方只要依次取两位编码进行翻译就可以得出原数据,但如果原数据只由n个A组成的,那发出的编码就是2n个0组成,这样的…
赫夫曼树及其应用 赫夫曼(Huffman)树又称最优树,是一类带权路径长度最短的树,有着广泛的应用. 最优二叉树(Huffman树) 1 基本概念 ① 结点路径:从树中一个结点到另一个结点的之间的分支构成这两个结点之间的路径. ② 路径长度:结点路径上的分支数目称为路径长度. ③ 树的路径长度:从树根到每一个结点的路径长度之和. 以下图为例: A到F :结点路径 AEF : 路径长度(即边的数目) 2 : 树的路径长度:3*1+5*2+2*3=19: ④ 结点的带权路径长度:从该结点的到树的根结…
什么是赫夫曼树? 赫夫曼树(Huffman Tree)是指给定N个权值作为N个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小.哈夫曼树(也称为最优二叉树)是带权路径长度最短的树,权值较大的结点离根较近. 1 public class HNode<T> 2 { 3 public HNode() 4 { 5 data = default(T); 6 weight = 0; 7 leftNode = null; 8 rightNode = null; 9 } 10 11 public HNo…
Java数据结构和算法(七)B+ 树 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 我们都知道二叉查找树的查找的时间复杂度是 O(logN),其查找效率已经足够高了,那为什么还有 B 树和 B+ 树的出现呢?难道它两的时间复杂度比二叉查找树还小吗?答案当然不是, B 树和 B+ 树的出现是因为另外一个问题,那就是磁盘 IO. 一.计算机中数据的存储原理 页是计算机管理存储的逻辑块,硬件及操作系统往往将主存和磁盘存储区分割…
Description An entropy encoder is a data encoding method that achieves lossless data compression by encoding a message with "wasted" or "extra" information removed. In other words, entropy encoding removes information that was not nece…