1. 摘要 作者提出了一个代号为 Inception 的卷积神经网络架构,这也是作者在 2014 年 ImageNet 大规模视觉识别挑战赛中用于分类和检测的新技术. 通过精心的设计,该架构提高了网络内计算资源的利用率,因而允许在增加网络的深度和宽度的同时保持计算预算不变. 在作者提交的 ILSVRC14 中使用的一个特定的模型称为 GoogLeNet ,一个 22 层深的网络,在分类和检测的背景下对其性能进行了评估. 2. 介绍 在过去三年中,卷积神经网络在图像识别和物体检测领域取得了巨大的进…
(GoogLeNet)Going deeper with convolutions Inception结构 目前最直接提升DNN效果的方法是increasing their size,这里的size包括depth和width两方面.在有足够的labeled training data 时这种方法是最简单以及稳妥的方法来获得一个高质量的模型.但是往往实际中大的网络会有更多的参数,当training data数量很少时,很容易出现overfitting,并且大的网络需要的计算资源也是更多.这是需要将…
论文地址 在该论文中作者提出了一种被称为Inception Network的深度卷积神经网络,它由若干个Inception modules堆叠而成.Inception的主要特点是它能提高网络中计算资源的利用率,这得益于网络结构的精心设计(基于 Hebbian principle 和 the intuition of multi-scale processing ),使得网络在增加宽度和深度的同时又能保持计算开销不变.作者在论文中还介绍了 Inception 的一个应用例子--GoogLenet,…
致网友:如果你不小心检索到了这篇文章,请不要看,因为很烂.写下来用于作为我的笔记. 2014年,在LSVRC14(large-Scale Visual Recognition Challenge)中,Google团队凭借 googLeNet 网络取得了 the new state of the art. 论文 Going deeper with convolutions 就是对应该网络发表的一篇论文: 主要内容: 主要围绕着一个 Inception architecture 怎么提出讲的: 不明…
  论文链接:Going deeper with convolutions 代码下载: Abstract We propose a deep convolutional neural network architecture codenamed Inception that achieves the (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing res…
目录 代码 Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]. computer vision and pattern recognition, 2015: 1-9. @article{szegedy2015going, title={Going deeper with convolutions}, author={Szegedy, Christian and Liu, Wei and Jia, Yangqing…
论文原址:https://arxiv.org/pdf/1409.4842.pdf 代码连接:https://github.com/titu1994/Inception-v4(包含v1,v2,v4)  摘要 本文提出了一个深层的卷积网络结构-Inception,该结构的主要特点是提高了网络内部计算资源的利用率.在预估计算资源消耗量不变的情况下增加网络的深度及宽度.为了进行有效的优化,结构决策基于Hebbian原理及多尺寸处理操作.本文思想的一个经典实现是GoogLeNet,网络的深度为22层,该网…
目录 Abstract Introduction First of All Inception Depth Related Work Motivation and High Level Considerations 增加网络的深度和宽度会带来两个问题: 解决思路 不利因素 解决方法 Starting 注意 Architecture Details The Main Idea Inception GoogLeNet Training Methodology Abstract 该网络结构可以在增加网…
从LeNet-5开始,cnn就有了标准的结构:stacked convolutional layers are followed by one or more fully-connected layers.对于Imagenet这种大的数据集,趋势是增加层数和层的大小,用dropout解决过拟合. 1×1卷积核在Inception中大量使用,两个作用:dimension reduction and rectified linear activation(即增加非线性)(维度降低减少参数:并增加模型…
本文采用的GoogLenet网络(代号Inception)在2014年ImageNet大规模视觉识别挑战赛取得了最好的结果,该网络总共22层. Motivation and High Level Considerations 提升深度神经网络的一个最直接的方法就是增加网络的大小.这包括增加网络的深度(网络的层数)和宽度(每一层神经元的个数).这种简单粗暴的方法有两个缺点:1)更大网络意味着更多数量的参数,这非常容易导致过拟合.2)更大的网络意味着要使用更多的计算资源. 解决这两个问题的一个基本的…