seaborn教程1——风格选择】的更多相关文章

原文链接:https://segmentfault.com/a/1190000014915873 Seaborn学习大纲 seaborn的学习内容主要包含以下几个部分: 风格管理 绘图风格设置 颜色风格设置 绘图方法 数据集的分布可视化 分类数据可视化 线性关系可视化 结构网格 数据识别网格绘图 本次将主要介绍颜色调控的使用. 0.seaborn介绍: Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn就能做出很具有…
conda  install seaborn  是安装到jupyter那个环境的 1. 整体风格设置 对图表整体颜色.比例等进行风格设置,包括颜色色板等调用系统风格进行数据可视化 set() / set_style() / axes_style() / despine() / set_context() import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns % ma…
191214-SpringBoot 系列教程自动配置选择生效 写了这么久的 Spring 系列博文,发现了一个问题,之前所有的文章都是围绕的让一个东西生效:那么有没有反其道而行之的呢? 我们知道可以通过@ConditionOnXxx来决定一个配置类是否可以加载,那么假设有这么个应用场景 有一个 Print 的抽象接口,有多个实现,如输出到控制台的 ConsolePrint, 输出到文件的 FilePrint, 输出到 db 的 DbPrint 我们在实际使用的时候,根据用户的选择,使用其中的一个…
https://segmentfault.com/a/1190000015310299 Seaborn学习大纲 seaborn的学习内容主要包含以下几个部分: 风格管理 绘图风格设置 颜色风格设置 绘图方法 数据集的分布可视化 分类数据可视化 线性关系可视化 结构网格 数据识别网格绘图 本次将主要介绍 分类数据可视化的使用. 分类数据可视化 数据集中的数据类型有很多种,除了连续的特征变量之外,最常见的就是类目型的数据类型了,常见的比如人的性别,学历,爱好等.这些数据类型都不能用连续的变量来表示,…
原文转载 https://segmentfault.com/a/1190000014966210 Seaborn学习大纲 seaborn的学习内容主要包含以下几个部分: 风格管理 绘图风格设置 颜色风格设置 绘图方法 数据集的分布可视化 分类数据可视化 线性关系可视化 结构网格 数据识别网格绘图 本次将主要介绍颜色调控的使用. 颜色风格设置   在Seaborn的使用中,是可以针对数据类型而选择合适的颜色,并且使用选择的颜色进行可视化,节省了大量的可视化的颜色调整工作.还是一样,在介绍如何使用颜…
本篇文章将介绍区域报表和页面报表的常见使用场景.区别和选择报表类型的一些建议,两种报表的模板设计.数据源(设计时和运行时)设置.和浏览报表的区别. ActiveReports 报表控件官方中文入门教程 (1)-安装.激活以及产品资源 ActiveReports 报表控件官方中文入门教程 (2)-创建.数据源.浏览以及发布 本篇文章包括以下部分: 1.区域报表和页面报表的区别 两种报表的具体应用场景 区域报表和页面报表的区别 项目中如何选择报表类型 2.区域报表和页面报表数据源设置 运行时 设计时…
原文转载:https://segmentfault.com/a/1190000015006667 Seaborn学习大纲 seaborn的学习内容主要包含以下几个部分: 风格管理 绘图风格设置 颜色风格设置 绘图方法 数据集的分布可视化 分类数据可视化 线性关系可视化 结构网格 数据识别网格绘图 本次将主要介绍数据集的分布可视化的使用. 数据集分布可视化 当处理一个数据集的时候,我们经常会想要先看看特征变量是如何分布的.这会让我们对数据特征有个很好的初始认识,同时也会影响后续数据分析以及特征工程…
工欲善其事必先利其器,现在的node环境下,有太多好用的工具能够帮助我们更好的开发和维护管理项目. 我本人不建议什么功能都自己写,我比较喜欢代码复用.只要能找到npm包来实现的功能,坚决不自己敲代码. 本次编写程序的两个原则:1.尽量使用声明式的编程风格(声明式和命令式,不是很清楚的自己查查资料)2.能复用的决不自己编写. 任何多余的繁琐的行为都是错误的 本次编写架构的目的:简单好用易开发易管理.(项目是变想变创建的,可能需要后续的不断优化.大家尽量作为学习材料参考,也可直接用于项目,反正我自己…
Python在数据科学中的地位,不仅仅是因为numpy, scipy, pandas, scikit-learn这些高效易用.接口统一的科学计算包,其强大的数据可视化工具也是重要组成部分.在Python中,使用的最多的数据可视化工具是matplotlib,除此之外还有很多其他可选的可视化工具包,主要包括以下几大类: matplotlib以及基于matplotlib开发的工具包:pandas中的封装matplotlib API的画图功能,seaborn,networkx等: 基于JavaScrip…
[Sass]不同样式风格的输出方法 众所周知,每个人编写的 CSS 样式风格都不一样,有的喜欢将所有样式代码都写在同一行,而有的喜欢将样式分行书写.在 Sass 中编译出来的样式风格也可以按不同的样式风格显示.其主要包括以下几种样式风格: 嵌套输出方式 nested 展开输出方式 expanded   紧凑输出方式 compact  压缩输出方式 compressed [Sass]嵌套输出方式 nested 1.嵌套输出方式 nested Sass 提供了一种嵌套显示 CSS 文件的方式.例如…