Spark译文(三)】的更多相关文章

Structured Streaming Programming Guide(结构化流编程指南) Overview(概貌) ·Structured Streaming是一种基于Spark SQL引擎的可扩展且容错的流处理引擎. ·您可以像表达静态数据的批处理计算一样表达流式计算. ·Spark SQL引擎将负责逐步和连续地运行它,并在流数据继续到达时更新最终结果. ·您可以使用Scala,Java,Python或R中的数据集/数据框架API来表示流聚合,事件时间窗口,流到批处理连接等.计算在同一…
参考自:Spark部署三种方式介绍:YARN模式.Standalone模式.HA模式http://www.aboutyun.com/forum.php?mod=viewthread&tid=7115(出处: about云开发) 1.Yarn模式由谁来作为客户端提交作业给YARN? 2.SPARK_HADOOP_VERSION=2.2.0 SPARK_YARN=true ./sbt/sbt assembly的作用是什么? 3.Standalone 模式dist目录的作用是什么? 4.recover…
基于Spark1.3.0的Spark sql三个核心部分: 1.可以架子啊各种结构化数据源(JSON,Hive,and Parquet) 2.可以让你通过SQL,saprk内部程序或者外部攻击,通过标准的数据库连接(JDBC/ODBC)连接spark,比如一个商业智能的工具Tableau 3.当你通过使用spark程序,spark sql提供丰富又智能的SQL或者regular Python/Java/Scala code,包括 join RDDS ,SQL tables ,使用SQL自定义用户…
目录 Spark(三)角色和搭建 一.Spark集群角色介绍 二.集群的搭建 三.history服务 四.使用spark-submit进行计算Pi 五.Spark On Yarn 六.shell脚本 七.调优 Spark(三)角色和搭建 一.Spark集群角色介绍 详见JerryLead/SparkInternals,他的图解介绍能清晰的讲清楚Spark集群 二.集群的搭建 2.1.架构(图片来源,Spark官网) 一个Driver Program含有一个SparkContext,课由Clust…
之前在 大话Spark(2)里讲过Spark Yarn-Client的运行模式,有同学反馈与Cluster模式没有对比, 这里我重新整理了三张图分别看下Standalone,Yarn-Client 和 Yarn-Cluster的运行流程. 1.独立(Standalone)运行模式  独立运行模式是Spark自身实现的资源调度框架,由客户端.Master节点和多个Worker节点组成.其中SparkContext既可以运行在Master节点上,也可以运行在客户端. Worker节点可以通过Exe…
一.自定义分区 1.概述 默认的是Hash的分区策略,这点和Hadoop是类似的,具体的分区介绍,参见:https://blog.csdn.net/high2011/article/details/68491115 2.实现 package cn.itcast.spark.day3 import java.net.URL import org.apache.spark.{HashPartitioner, Partitioner, SparkConf, SparkContext} import s…
一.RDD的概述 1.1 什么是RDD RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 1.2 RDD的属性 (1)一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片都…
首先介绍一下Shark的概念 Shark简单的说就是Spark上的Hive,其底层依赖于Hive引擎的 但是在Spark平台上,Shark的解析速度是Hive的几多倍 它就是Hive在Spark上的体现,并且是升级版,一个强大的数据仓库,并且是兼容Hive语法的 下面给出一张来自网上的Shark构架图 从图上可以看出,Spark的最底层大部分还是基于HDFS的,Shark中的数据信息等也是对应着HDFS上的文件 从图中绿色格子中可以看到,在Shark的整个构架中HiveQL的引擎还是占据着底层不…
上一篇说到,在Spark 2.x当中,实际上SQLContext和HiveContext是过时的,相反是采用SparkSession对象的sql函数来操作SQL语句的.使用这个函数执行SQL语句前需要先调用DataFrame的createOrReplaceTempView注册一个临时表,所以关键是先要将RDD转换成DataFrame.实际上,在Spark中实际声明了 type DataFrame = Dataset[Row] 所以,DataFrame是Dataset[Row]的别名.RDD是提供…
RDD 介绍 spark 最重要的一个概念叫 RDD,Resilient Distributed Dataset,弹性分布式数据集,它是 spark 的最基本的数据(也是计算)抽象. 代码中是一个抽象类,它代表一个 不可变.可分区.里面的元素可并行计算的数据集合. RDD 的属性 拥有一组分区:数据集的基本组成单位 拥有一个计算每个分区的函数 拥有一个分区器,partitioner,即 RDD 的分片函数 RDD 间存在依赖关系 [下面 RDD 特点中有解释] 拥有一个列表,存储每个 parti…