batch normlization (BN)的讲解】的更多相关文章

1. https://zhuanlan.zhihu.com/p/54073204(简单理解) 2. https://zhuanlan.zhihu.com/p/34879333 (有举例说明,但是不太理解.)…
目录 BN的由来 BN的作用 BN的操作阶段 BN的操作流程 BN可以防止梯度消失吗 为什么归一化后还要放缩和平移 BN在GoogLeNet中的应用 参考资料 BN的由来 BN是由Google于2015年提出,论文是<Batch Normalization_ Accelerating Deep Network Training by Reducing Internal Covariate Shift>,这是一个深度神经网络训练的技巧,主要是让数据的分布变得一致,从而使得训练深层网络模型更加容易…
Batch Normlization(BN) 为什么要进行 BN 防止深度神经网络,每一层得参数更新会导致上层的输入数据发生变化,通过层层叠加,高层的输入分布变化会十分剧烈,这就使得高层需要不断去重新适应底层的参数更新.为了训好模型,我们需要非常谨慎地去设定学习率.初始化权重.以及尽可能细致的参数更新策略. 另外对一些激活函数具有饱和区,比如 sigmoid 函数的输入较大和较小,此时的梯度很小,这会导致权重更新十分缓慢.又比如下图的 tanh 函数: 如果输入的数值没有 BN 那么数据可能在两…
Feature Scaling 可以翻译为特征归一化,或者数据归一化,比如统计学习中,我们一般都会对不同量纲的特征做归一化,深度学习中经常会谈到增加的BN层,LRN层会带来训练收敛速度的提升,等等.问题是,我们为什么需要做Feature Scaling呢?可以不做吗?做Feature Scaling背后的数学意义是什么? 首先,我们来看看下面一个简单的神经元 如果x1的输入值范围在(0,10), 而x2的值输入值范围在(1000, 10000),在模型训练(一般选择梯度下降法)时,需要迭代更新可…
课程主页:http://cs231n.stanford.edu/   Introduction to neural networks -Training Neural Network ______________________________________________________________________________________________________________________________________________________________…
加速网络收敛——BN.LN.WN与selu 自Batch Norm出现之后,Layer Norm和Weight Norm作为Batch Norm的变体相继出现.最近又出来一个很”简单”的激活函数Selu,能够实现automatic rescale and shift.这些结构都是为了保证网络能够堆叠的更深的基本条件之一.除了这四种,还有highway network与resnet. Batch Norm BN对某一层激活值做batch维度的归一化,也就是对于每个batch,该层相应的output…
使用tensorflow时,会发现tf.nn,tf.layers, tf.contrib模块有很多功能是重复的,尤其是卷积操作,在使用的时候,我们可以根据需要现在不同的模块.但有些时候可以一起混用. 下面是对三个模块的简述: (1)tf.nn :提供神经网络相关操作的支持,包括卷积操作(conv).池化操作(pooling).归一化.loss.分类操作.embedding.RNN.Evaluation. (2)tf.layers:主要提供的高层的神经网络,主要和卷积相关的,个人感觉是对tf.nn…
训练神经网络的过程,就是在求未知参数(权重).让网络搭建起来,得到理想的结果. 分类-监督学习. 反向传播求权重:每一层在算偏导数.局部梯度,链式法则. 激活函数: sigmoid仅中间段趋势良好 对复杂的神经网络(累计),会出现梯度消失.梯度爆炸 训练网络是为了求权重: 反向传播方法,更新权重: 使用的是梯度来更新,如果梯度趋近于0, sigmoid梯度最大才0.25. Batch Normalization BN解决了梯度消失同时保留非线性. ICS现象(internel  shift)输入…
看mnist数据集上其他人的CNN模型时了解到了Batch Normalization 这种操作.效果还不错,至少对于训练速度提升了很多. batch normalization的做法是把数据转换为0均值和单位方差 这里分五部分简单解释一下Batch Normalization (BN).1. What is BN?顾名思义,batch normalization嘛,就是“批规范化”咯.Google在ICML文中描述的非常清晰,即在每次SGD时,通过mini-batch来对相应的activati…
Coursera吴恩达<优化深度神经网络>课程笔记(3)-- 超参数调试.Batch正则化和编程框架 1. Tuning Process 深度神经网络需要调试的超参数(Hyperparameters)较多,包括: :学习因子 :动量梯度下降因子 :Adam算法参数 #layers:神经网络层数 #hidden units:各隐藏层神经元个数 learning rate decay:学习因子下降参数 mini-batch size:批量训练样本包含的样本个数 超参数之间也有重要性差异. 1.通常…