延迟调度算法的实现是在TaskSetManager类中的,它通过将task存放在四个不同级别的hash表里,当有可用的资源时,resourceOffer函数的参数之一(maxLocality)就是这些资源的最大(或者最优)locality级别,如果存在task满足资源的locality,那从最优级别的hash表.也就是task和excutor都有loclity级别,如果能找到匹配的task,那从匹配的task中找一个最优的task.    =====================延迟调度算法=…
spark论文中说他使用了延迟调度算法,源于这篇论文:http://people.csail.mit.edu/matei/papers/2010/eurosys_delay_scheduling.pdf 同时它也是hadoop的调度算法. Abstract delay scheduling: when the job that should be scheduled next according to fairness cannot launch a local task, it waits f…
http://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf  ucb关于spark的论文,对spark中核心组件RDD最原始.本质的理解,没有比这个更好的资料了.必读. Abstract RDDs provide a restricted form of shared memory, based on coarse grained transformations rather than fine-grained updates to…
Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD 抽象 2.2 Spark 编程接口 2.2.1 例子 – 监控日志数据挖掘 2.3 RDD 模型的优势 2.4 不适合用 RDDs 的应用 3 Spark 编程接口 3.1 Spark 中 RDD 的操作 3.2 举例应用 3.2.1 线性回归 3.2.2 PageRank 4 表达 RDDs 5…
Spark学习笔记 Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用.减少了延时处理,提高性能效率实用灵活性.也可以与hadoop切实相互结合. spark核心部分分为RDD.Spark SQL.Spark Streaming.MLlib.GraphX.Spark R等核心组件解决了很多的大数据问题,其完美的框架日受欢迎.其相应的生态环境包括zepplin等可视化方面…
Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Input DStreams 和 Receivers(接收器) DStreams 上的 Transformations(转换) DStreams 上的输出操作 DataFrame 和 SQL 操作 MLlib 操作 缓存 / 持久性 Checkpointing Accumulators, Broadcas…
Apache Spark 2.2.0 中文文档 - 快速入门 | ApacheCN Geekhoo 关注 2017.09.20 13:55* 字数 2062 阅读 13评论 0喜欢 1 快速入门 使用 Spark Shell 进行交互式分析 基础 Dataset 上的更多操作 缓存 独立的应用 快速跳转 本教程提供了如何使用 Spark 的快速入门介绍.首先通过运行 Spark 交互式的 shell(在 Python 或 Scala 中)来介绍 API, 然后展示如何使用 Java , Scal…
在前面的sparkContex和RDD都可以看到,真正的计算工作都是同过调用DAGScheduler的runjob方法来实现的.这是一个很重要的类.在看这个类实现之前,需要对actor模式有一点了解:http://en.wikipedia.org/wiki/Actor_model http://www.slideshare.net/YungLinHo/introduction-to-actor-model-and-akka 粗略知道actor模式怎么实现就可以了.另外,应该先看看DAG相关的概念…
Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Input DStreams 和 Receivers(接收器) DStreams 上的 Transformations(转换) DStreams 上的输出操作 DataFrame 和 SQL 操作 MLlib 操作 缓存 / 持久性 Checkpointing Accumulators, Broadcas…
scala> val textFile = sc.textFile("/Users/admin/spark-1.5.1-bin-hadoop2.4/README.md") scala> val topWord = textFile.flatMap(_.split(" ")).filter(!_.isEmpty).map((_,1)).reduceByKey(_+_).map{case (word,count) =>(count,word)}.sor…