ROC & AUC笔记】的更多相关文章

易懂:http://alexkong.net/2013/06/introduction-to-auc-and-roc/ 分析全面但难懂:http://mlwiki.org/index.php/ROC_Analysis 重点:1.  预测概率 需要排序 2. 计算AUC及画ROC曲线需要输入的是:预测概率+真实标签.不能输入预测标签.…
1.什么是性能度量? 我们都知道机器学习要建模,但是对于模型性能的好坏(即模型的泛化能力),我们并不知道是怎样的,很可能这个模型就是一个差的模型,泛化能力弱,对测试集不能很好的预测或分类.那么如何知道这个模型是好是坏呢?我们必须有个评判的标准.为了了解模型的泛化能力,我们需要用某个指标来衡量,这就是性能度量的意义.有了一个指标,我们就可以对比不同模型了,从而知道哪个模型相对好,那个模型相对差,并通过这个指标来进一步调参逐步优化我们的模型. 当然,对于分类和回归两类监督学习,分别有各自的评判标准.…
参考资料:https://zhuanlan.zhihu.com/p/46714763 ROC/AUC作为机器学习的评估指标非常重要,也是面试中经常出现的问题(80%都会问到).其实,理解它并不是非常难,但是好多朋友都遇到了一个相同的问题,那就是:每次看书的时候都很明白,但回过头就忘了,经常容易将概念弄混.还有的朋友面试之前背下来了,但是一紧张大脑一片空白全忘了,导致回答的很差. 我在之前的面试过程中也遇到过类似的问题,我的面试经验是:一般笔试题遇到选择题基本都会考这个率,那个率,或者给一个场景让…
IOU 在目标检测算法中,交并比Intersection-over-Union,IoU是一个流行的评测方式,是指产生的候选框candidate bound与原标记框ground truth bound的交叠率,即它们的交集与并集的比值.最理想情况是完全重叠,即比值为1.一般来说,这个score > 0.5 就可以被认为一个不错的结果了. 脚本实现: def compute_iou(rec1, rec2): """ computing IoU: param rec1: (…
ROC 曲线:接收者操作特征曲线(receiver operating characteristic curve),是反映敏感性和特异性连续变量的综合指标,roc 曲线上每个点反映着对同一信号刺激的感受性. 对于分类器或者说分类算法,评价指标主要有precision,recall,F1 score等,以及这里要讨论的ROC和AUC.下图是一个 ROC 曲线的示例: 横坐标:Sensitivity,伪正类率(False positive rate, FPR),预测为正但实际为负的样本占所有负例样本…
这里主要讲的是对分类模型的评估. 1.准确率(Accuracy) 准确率的定义是:[分类正确的样本] / [总样本个数],其中分类正确的样本是不分正负样本的 优点:简单粗暴 缺点:当正负样本分布不均衡的情况(假设一种极端情况,正样本1个,负样本99个),此时即使一个比较差的模型(只会将所用的样本预测成负样本),那它也有99%的准确率. 总结一下就是 当样本分布不均匀,该指标意义不大 改进方案: 1.在不同样本分类下求它的准确率,然后取平均值 2.选取其他评价指标 2.PR曲线 Precision…
https://stackoverflow.com/questions/41032551/how-to-compute-receiving-operating-characteristic-roc-and-auc-in-keras https://github.com/keras-team/keras/issues/3230#issuecomment-319208366 http://www.luozhipeng.com/?p=1225 http://scikit-learn.org/stabl…
1. Precision和Recall Precision,准确率/查准率.Recall,召回率/查全率.这两个指标分别以两个角度衡量分类系统的准确率. 例如,有一个池塘,里面共有1000条鱼,含100条鲫鱼.机器学习分类系统将这1000条鱼全部分类为“不是鲫鱼”,那么准确率也有90%(显然这样的分类系统是失败的),然而查全率为0%,因为没有鲫鱼样本被分对.这个例子显示出一个成功的分类系统必须同时考虑Precision和Recall,尤其是面对一个不平衡分类问题. 下图为混淆矩阵,摘自wiki百…
度量表 1.准确率 (presion) p=TPTP+FP 理解为你预测对的正例数占你预测正例总量的比率,假设实际有90个正例,10个负例,你预测80(75+,5-)个正例,20(15+,5-)个负例 实际上你的准确率为75/80=0.9375,但这个评价指标有什么问题呢,想想就知道,这里你并没有用到实际的正例数,那么仅仅靠你猜中的正例作为分母,你并不知道实际的正例有多少,你看召回率为75/90=0.83,就是说你的猜测局限于预测范围 2.召回率       (recall)r=TPTP+FN…
参考博文,特别的好!!!:https://www.jianshu.com/p/82903edb58dc AUC的计算: 法1:AUC为ROC曲线下的面积,那我们直接计算面积可得.面积为一个个小的梯形面积(曲线)之和.计算的精度与阈值的精度有关. 法2:根据AUC的物理意义,我们计算正样本预测结果大于负样本预测结果的概率.取n1*n0(n1为正样本数,n0为负样本数)个二元组,比较score(预测结果),最后得到AUC.时间复杂度为O(N*M). 取n1*n0(n1为正样本数,n0为负样本数)个二…