CatBoost算法和调参】的更多相关文章

欢迎关注博主主页,学习python视频资源 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share # -*- coding: utf-8 -*- """ Created on…
最优化方法 调参方法 ml算法 梯度下降gd grid search lr 梯度上升 随机梯度下降 pca 随机梯度下降sgd  贝叶斯调参 lda 牛顿算法   knn 拟牛顿算法   kmeans 遗传算法   tree 蚁群算法    gbdt 模拟退火    xgboost 反向传播算法    lightgbm  坐标上升?   svm     rf 一.调参的思路: 如针对上面的问题,对x1和x2两个参数调优,假设起始点为绿色点, 1.grid search(全部交叉):计算所有上面的…
在此之前,调参要么网格调参,要么随机调参,要么肉眼调参.虽然调参到一定程度,进步有限,但仍然很耗精力. 自动调参库hyperopt可用tpe算法自动调参,实测强于随机调参. hyperopt 需要自己写个输入参数,返回模型分数的函数(只能求最小化,如果分数是求最大化的,加个负号),设置参数空间. 本来最优参数fmin函数会自己输出的,但是出了意外,参数会强制转化整数,没办法只好自己动手了. demo如下: import lightgbm as lgb from sklearn.metrics i…
//2019.08.02下午#机器学习算法中的超参数与模型参数1.超参数:是指机器学习算法运行之前需要指定的参数,是指对于不同机器学习算法属性的决定参数.通常来说,人们所说的调参就是指调节超参数.2.模型参数:是指算法在使用过程中需要学习得到的参数,即输入与输出之间映射函数中的参数,它需要通过对于训练数据集训练之后才可以得到.3.对于KNN算法,它是没有模型参数的,它的k参数就属于典型的超参数. 4.好的超参数的选择主要取决于三个方面:(1)领域知识(2)经验数值(3)实验搜索5.K近邻算法常用…
 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share https://www.imooc.com/article/43784?block_id=tuijian_wz 鄙人调参新手,最近用lightGBM有…
python信用评分卡建模(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share sklearn逻辑回归官网调参指南 https://scikit-learn.org/stable/modules/generated/sklearn.linear…
在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结.本文就从实践的角度对RF做一个总结.重点讲述scikit-learn中RF的调参注意事项,以及和GBDT调参的异同点. 1. scikit-learn随机森林类库概述 在scikit-learn中,RF的分类类是RandomForestClassifier,回归类是RandomForestRegressor.当然RF的变种Extra Trees也有, 分类类ExtraTreesC…
在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn GBDT类库概述 在sacikit-learn中,GradientBoostingClassifier为GBDT的分类类, 而GradientBoostingRegressor为GBDT的回归类.两者的参数类型完全相同,当然有些参数比如损失函数loss的可选择项并不相同.这些参数中,类似于Adabo…
 一.word2vec调参   ./word2vec -train resultbig.txt -output vectors.bin -cbow 0 -size 200 -window 5 -negative 0 -hs 1 -sample 1e-3 -threads 12 -binary 1 一般来说,比较喜欢用cbow ,因为模型中 cbow有向量相加的运算.##保留意见   -cbow 0表示不使用cbow模型,默认为Skip-Gram模型 -size 表示词向量维数:经验是不超过100…
闲话: 作为一个控制专业的学生,说起PID,真是让我又爱又恨.甚至有时候会觉得我可能这辈子都学不会pid了,但是经过一段时间的反复琢磨,pid也不是很复杂.所以在看懂pid的基础上,写下这篇文章,方便学习和交流. ============================================================================= PID控制器是工业过程控制中广泛采用的一种控制器,其中,P.I.D分别为比例(Proportion).积分(Integral).微…