2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 838  Solved: 444[Submit][Status][Discuss] Description 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点)都小,我们说这个格子是局部极小值. 给出所有局部极小值的位置,你的任务是判断有多少个可能的矩阵. Input 输入第一行包含两个整数…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2669 题意概述:实际上原题意很简洁了我就不写了吧.... 二话不说先观察一下性质,首先棋盘很窄,可以乱搞的样子,然后注意到如果一个点是局部极小值那么周围3*3矩阵内不能有另一个局部最小值.于是画个图发现题目的数据范围最多有8个局部最小值.性质大概就是这些了. 暴力实际上是搜索,本质是多阶段决策问题.由于棋盘很小,容易让人联想到搞个插头dp之类东西来弄一下,依次填每个格子来作为一个决策阶段…
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2669 题解: 容斥,DP,DFS 先看看 dp 部分:首先呢,X的个数不会超过 8个.个数很少,所以考虑状压,把需要填 X的那几个位置状压为二进制10表示对应的那个X位置是否已经填数.同时填的数互不重复,考虑从小填到大. 令 cnt[S] 表示除了不在集合 S 里的 X 位置及其周围的位置,剩下的位置个数. 定义 dp[i][S]表示从小到大填数填完了i这个数,且已经填了的 S 这个集合里…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2169 就和这篇博客说的一样:https://blog.csdn.net/WerKeyTom_FTD/article/details/70274470 注意每次是 /i 而不是 /(i!),因为 i-1 时也已经去了重,现在就是对于新加一条边的多种方式带来一种局面去重,从每一种局面看,新加的边可以是任意一条,所以 /i. 代码如下: #include<iostream> #include&…
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 667  Solved: 350 Description 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点)都小,我们说这个格子是局部极小值. 给出所有局部极小值的位置,你的任务是判断有多少个可能的矩阵. Input 输入第一行包含两个整数n和m(1<=n<=4, 1<=m<…
LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[i]大于b的组数. 不妨从整体去考虑,使用$f[n][j]$代表前n个中有j组$a[i]>b[i]$,很容易得到转移式$f[n][j]=f[n-1][j]+f[n-1][j-1]*(cnt[n]-(j-1))$,其中$cnt[i]$为比a[i]小的b[]个数 但是仔细思考该式子含义会发现,$f[n][j…
4665: 小w的喜糖 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 94  Solved: 53 Description 废话不多说,反正小w要发喜糖啦!! 小w一共买了n块喜糖,发给了n个人,每个喜糖有一个种类.这时,小w突发奇想,如果这n个人相互交换手中的糖,那会有多少种方案使得每个人手中的糖的种类都与原来不同. 两个方案不同当且仅当,存在一个人,他手中的糖的种类在两个方案中不一样. Input 第一行,一个整数n 接下来n行,每行一个整数…
题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包的做法. 就是对于每一次询问,我们都做一次背包. 复杂度O(tot*s*log(di)) (使用二进制背包优化) 显然会T得起飞. 接下来,我们可以换一种角度来思考这个问题. 首先,我们可以假设没有每个物品的数量的限制,那么这样就会变成一个很简单的完全背包问题. 至于完全背包怎么写,我们在这里就不做…
题目链接 P3160 [CQOI2012]局部极小值 双倍经验,双倍快乐 解题思路 存下来每个坑(极小值点)的位置,以这个序号进行状态压缩. 显然,\(4*7\)的数据范围让极小值点在8个以内(以下示意) X . X . X . X . . . . . . . . . X . X . X . X . . . . . . . . . 所以考虑用\(S\)表示各个极小值点是否已填的状态,枚举\(1-n*m\)进行状压\(DP\). 当前填的数有两种选择: (\(1\))填入坑中,这样枚举\(S\)状…
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2669 题解 可以发现一个 \(4\times 7\) 的矩阵中,有局部最小值的点最多有 \(2\times 4 = 8\) 个,所以我们可以状压一下每个局部最小值的位置有没有被选. 从小到大填入每一个格子,那么如果一个点的周围有没有被填上的局部最小值,那么这个格子不可以被填.所以预处理一下每种状态下可以自由填多少格子,然后如果状态保持不变的话,就可以这样转移. 如果状态变化,就是说填了一个局…