目录 时间序列深度学习:seq2seq 模型预测太阳黑子 学习路线 商业中的时间序列深度学习 商业中应用时间序列深度学习 深度学习时间序列预测:使用 keras 预测太阳黑子 递归神经网络 设置.预处理与探索 所用的包 数据 探索性数据分析 回测:时间序列交叉验证 LSTM 模型 数据准备 用 recipe 做数据预处理 调整数据形状 构建 LSTM 模型 在所有分割上回测模型 时间序列深度学习:seq2seq 模型预测太阳黑子 本文翻译自<Time Series Deep Learning,…
from:https://baijiahao.baidu.com/s?id=1584177164196579663&wfr=spider&for=pc seq2seq模型是以编码(Encode)和解码(Decode)为代表的架构方式,seq2seq模型是根据输入序列X来生成输出序列Y,在翻译,文本自动摘要和机器人自动问答以及一些回归预测任务上有着广泛的运用.以encode和decode为代表的seq2seq模型,encode意思是将输入序列转化成一个固定长度的向量,decode意思是将输入…
RNN,LSTM,seq2seq等模型广泛用于自然语言处理以及回归预测,本期详解seq2seq模型以及attention机制的原理以及在回归预测方向的运用. 1. seq2seq模型介绍 seq2seq模型是以编码(Encode)和解码(Decode)为代表的架构方式,seq2seq模型是根据输入序列X来生成输出序列Y,在翻译,文本自动摘要和机器人自动问答以及一些回归预测任务上有着广泛的运用.以encode和decode为代表的seq2seq模型,encode意思是将输入序列转化成一个固定长度的…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/35 本文地址:http://www.showmeai.tech/article-detail/227 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为吴恩达老师<深度学习专业课程>学习与总结整理所得,对应的课程视频可以在这里查看. 引言 在ShowMeAI前一篇文章 自然语言处理与词嵌入 中我们对以下内容进行了介绍: 词嵌入与迁移学习/…
深度学习 vs. 概率图模型 vs. 逻辑学 摘要:本文回顾过去50年人工智能(AI)领域形成的三大范式:逻辑学.概率方法和深度学习.文章按时间顺序展开,先回顾逻辑学和概率图方法,然后就人工智能和机器学习的未来走向做些预测. [编者按]在上个月发表博客文章<深度学习 vs. 机器学习 vs. 模式识别>之后,CMU博士.MIT博士后及vision.ai联合创始人Tomasz Malisiewicz这一次带领我们回顾50年来人工智能领域三大范式(逻辑学.概率方法和深度学习)的演变历程.通过本文我…
[caffe]深度学习之图像分类模型AlexNet解读 原文地址:http://blog.csdn.net/sunbaigui/article/details/39938097   本文章已收录于:  深度学习知识库  分类: deep learning(28)  版权声明:本文为博主原创文章,未经博主允许不得转载. 在imagenet上的图像分类challenge上Alex提出的alexnet网络结构模型赢得了2012届的冠军.要研究CNN类型DL网络模型在图像分类上的应用,就逃不开研究ale…
一.简单介绍 vgg和googlenet是2014年imagenet竞赛的双雄,这两类模型结构有一个共同特点是go deeper.跟googlenet不同的是.vgg继承了lenet以及alexnet的一些框架.尤其是跟alexnet框架很像.vgg也是5个group的卷积.2层fc图像特征.一层fc分类特征,能够看做和alexnet一样总共8个part.依据前5个卷积group.每一个group中的不同配置,vgg论文中给出了A~E这五种配置.卷积层数从8到16递增. 从论文中能够看到从8到1…
深度学习之 seq2seq 进行 英文到法文的翻译 import os import torch import random source_path = "data/small_vocab_en" target_path = "data/small_vocab_fr" MAX_LENGTH = 100 SOS_token = 0 EOS_token = 1 def load_data(path): input_file = os.path.join(path) wi…
前言 如果你是一个完美主义者,那么请绕过此文,请参考<深度学习篇——Tensorflow配置(完美主义模式)> 安装 pip install tensorflow ok,只要不报错,安装就完成了,就可以用了. 错误填坑(不断更新) 1.pip错误:TypeError: parse() got an unexpected keyword argument 'transport_encoding' 解决办法:输入命令 conda install -c anaconda html5lib 然后 co…
[摘要] 本文为MoXing系列文章第一篇,主要介绍什么是MoXing,MoXing API的优势以及MoXing程序的基本结构. MoXing的概念 MoXing是华为云深度学习服务提供的网络模型开发API.相对于TensorFlow和MXNet等原生API,MoXing API让模型的代码编写更加简单,允许用户只需要关心数据输入(input_fn)和模型构建(model_fn)的代码,即可实现任意模型在多GPU和分布式下的高性能运行. MoXing-TensorFlow支持原生TensorF…
Predicting effects of noncoding variants with deep learning–based sequence model PDF Interpreting noncoding variants- 非常好的学习资料 这篇文章的第一个亮点就是直接从序列开始分析,第二就是使用深度学习获得了很好的预测效果. This is, to our knowledge, the first approach for prioritization of functional…
一.前述 CNN和RNN几乎占据着深度学习的半壁江山,所以本文将着重讲解CNN+RNN的各种组合方式,以及CNN和RNN的对比. 二.CNN与RNN对比 1.CNN卷积神经网络与RNN递归神经网络直观图 2.相同点:    2.1. 传统神经网络的扩展.    2.2. 前向计算产生结果,反向计算模型更新.    2.3. 每层神经网络横向可以多个神经元共存,纵向可以有多层神经网络连接. 3.不同点    3.1. CNN空间扩展,神经元与特征卷积:RNN时间扩展,神经元与多个时间输出计算   …
一.前述 调优对于模型训练速度,准确率方面至关重要,所以本文对神经网络中的调优做一个总结. 二.神经网络超参数调优 1.适当调整隐藏层数对于许多问题,你可以开始只用一个隐藏层,就可以获得不错的结果,比如对于复杂的问题我们可以在隐藏层上使用足够多的神经元就行了, 很长一段时间人们满足了就没有去探索深度神经网络, 但是深度神经网络有更高的参数效率,神经元个数可以指数倍减少,并且训练起来也更快!(因为每个隐藏层上面神经元个数减少了可以完成相同的功能,则连接的参数就少了) 就好像直接画一个森林会很慢,但…
之前参见了中国软件杯大赛,在大赛中用到了深度学习的相关算法,也训练了一些简单的模型.项目线上平台是用java编写的web应用程序,而深度学习使用的是python语言,这就涉及到了在java代码中调用python语言的方法. 为了能在java应用中使用python语言训练的算法模型,我在网上找了很久.我大概找到了三种方法 1. java代码可以直接调用python代码,只需要下载相应的jar包就行.这种方式我没有尝试,只是觉得这样做使得java应用太过于依赖python的环境了.还有网上也有将py…
angular指令深度学习-过滤器 limitTo ... <body ng-app="app" > <div ng-controller="myCtr"> {{data|limitTo:2:1}} <!-- 第一个参数表示截取几位,第二个参数表示从第几位截取 --> ... angular.module("app", []) .controller("myCtr", ["$sco…
一.前述 架构: 问题: 1.压缩会损失信息 2.长度会影响准确率 解决办法: Attention机制:聚焦模式 “高分辨率”聚焦在图片的某个特定区域并以“低分辨率”,感知图像的周边区域的模式.通过大量实验证明,将attention机制应用在机器翻译,摘要生成,阅读理解等问题上,取得的成效显著. 比如翻译:“”知识”只是聚焦前两个字. 每个C取不同的概率和值: Bucket机制: 正常情况要对所有句子进行补全,Bucket可以先分组,再计算.比如第一组计算输入[0-10],输出[0-10].…
一.前述 本文讲述池化层和经典神经网络中的架构模型. 二.池化Pooling 1.目标 降采样subsample,shrink(浓缩),减少计算负荷,减少内存使用,参数数量减少(也可防止过拟合)减少输入图片大小(降低了图片的质量)也使得神经网络可以经受一点图片平移,不受位置的影响(池化后相当于把图片上的点平移了)正如卷积神经网络一样,在池化层中的每个神经元被连接到上面一层输出的神经元,只对应一小块感受野的区域.我们必须定义大小,步长,padding类型池化神经元没有权重值,它只是聚合输入根据取最…
一.前述 一直以为自己的笔记本不支持tensflow-gpu的运行,结果每次运行模型都要好久.偶然间一个想法,想试试自己的笔记本,结果竟然神奇的发现能用GPU.于是分享一下安装步骤. 二.具体 因为版本之间有严格的对应关系,所以本文就将自己使用的版本对应分享如下,亲测可以成功!!首先查看下自己的显卡是否支持GPU,以下连接可以查看是否支持. https://developer.nvidia.com/cuda-gpus 1.安装Anaconda 3.5版本,并配置好环境变量. 链接如下:https…
两派 1. 新的卷机计算方法 这种是直接提出新的卷机计算方式,从而减少参数,达到压缩模型的效果,例如SqueezedNet,mobileNet SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size 修改网络结构,类似于mobileNet MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Appli…
在imagenet上的图像分类challenge上Alex提出的alexnet网络结构模型赢得了2012届的冠军.要研究CNN类型DL网络模型在图像分类上的应用,就逃不开研究alexnet.这是CNN在图像分类上的经典模型(DL火起来之后). 在DL开源实现caffe的model例子中.它也给出了alexnet的复现.详细网络配置文件例如以下https://github.com/BVLC/caffe/blob/master/models/bvlc_reference_caffenet/train…
tensoflow-gpu安装 对于python 3.5和3.6的童鞋们而言,安装tensorflow其实并不难,因为我们可以通过pip直接安装. 不过,第一要求你安装的python是64位的,如下图所示,注意划黄色线的部分. python 位数确定 第二,通过pip安装的话,有一个缺点,那就是会造成cpu的算力不够,因为缺少两个C的库,不过没有影响的.如果你是一个完美主义者,那么就只能通过Bazel方式源码安装Tensorflow了.详细过程我之后会发布相关文章,可以留意一下☺. pip 安装…
Error | 误差 Bias | 偏差 – 衡量准确性 Variance | 方差 – 衡量稳定性 首先我们通常在实际操作中会直接用错误率或者与之对应的准确率来衡量一个模型的好坏,但是更加准确的做法是误差衡量时综合考虑偏差和方差的共同作用. 所谓偏差Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度.Variance反映的是模型每一次输出结果与模型输出期望值之间的误差,即模型的稳定性. 举个例子,对于一个二分类问题,比如测试图片是不是猫,是猫的话就是1,不是猫就是2. 现…
实战场景 - 灰度发布 灰度发布的作用:按照一定的关系区别,分部分的代码进行上线,使代码的发布能平滑过渡上线实现方式: 1.用户的信息cookie等信息区别 2.根据用户的IP地址 安装memcached:yum -y install memcached 准备好两个tomcat,9090代表生产环境,8080代表预发布环境 为避免冲突,修改tomcat9090的端口号 这里分别在同个tomcat/webapp/ROOT/下放了同样内容的jsp文件 把8080下的jsp问价内容改一下区别于9090…
Nginx+Lua开发环境 1.下载LuaJIT解释器wget http://luajit.org/download/LuaJIT-2.0.2.tar.gztar -zxvf LuaJIT-2.0.2.tar.gzcd LuaJIT-2.0.2make install PREFIX=/usr/local/LuaJIT /etc/profile 文件中加入环境变量export LUAJIT_LIB=/usr/local/LuaJIT/libexport LUAJIT_INC=/usr/local/…
解释器 Lua:Lua是一个简洁.轻量.可扩展的脚本语言 Nginx+Lua优势充分的结合Nginx的并发处理epoll优势的Lua的轻量实现简单的功能切高并发的场景 安装Lua 1.安装解释器:yum install lua 2.运行 第一种运行方式: 第二种运行方式: Lua的基础语法 1.注释:--行注释--[[ 块注释 --]] 2.变量a = 'alo\n123"'a = "alo\n123""a = '\97lo\10\04923"'a = […
配置苹果要求的证书: 1.服务器所有的连接使用TLS1.2以上的版本(openssl 1.0.2) 2.HTTPS证书必须使用SHA256以上哈希算法签名 3.HTTPS证书必须使用RSA2048位或ECC256位以上公钥算法 4.使用前向加密技术 首先看openssl版本:openssl version,为1.0.1,需要升级 查看当前使用的自签算法类型:openssl x509 -noout -text -in ./jesonc.crt,使用的是sha1,位数是1024位,都不符合规定 升级…
一.HTTPS原理和作用: 1.为什么需要HTTPS?原因:HTTP不安全1.传输数据被中间人盗用.信息泄露2.数据内容劫持.篡改 2.HTTPS协议的实现对传输内容进行加密以及身份验证 对称加密:加密秘钥和解密秘钥是对等的,一样的 非对称加密: HTTPS加密协议原理: 中间人伪造客户端和服务端: HTTPS的CA签名证书: 二.证书签名生成CA证书 先确认环境:已经安装openssl和nginx已经编译ssl的模块 生成秘钥和CA证书步骤: 步骤1.生成key秘钥 步骤2.生成证书签名请求文…
这里介绍一些最新或者理解起来有一些难度的Nginx模块 一.secure_link_module模块作用原理:1.制定并允许检查请求的链接的真实性以及保护资源免遭未经授权的访问2.限制链接生效周期 配置语法:secure_link expression;默认状态:-配置方法:http.server.location 配置语法:secure_link_md5 expression;默认状态:-配置方法:http.server.location 二.secure_link模块实现请求资源验证 首先确…
Rewrite规则可以实现对url的重写,以及重定向 作用场景: 1.URL访问跳转,支持开发设计,如页面跳转,兼容性支持,展示效果等 2.SEO优化 3.维护:后台维护.流量转发等 4.安全 配置语法 配置语法:rewrite regex replacement [flag];默认状态:-配置方法:server.location.if如:rewrite ^(.*)$ /pages/maintain.html break; 常用的正则表达式 在linux下,可以用pcretest来测试 flag…
动静分离:通过中间件将动态请求和静态请求分离 作用:分离资源,减少不必要的请求消耗,减少请求延时 动静分离还有个好处就是,当动态请求的后端服务出问题了,只会影响动态的部分,静态资源不影响,照样加载 如布置以下场景: 页面 配置 tomcat下放一个生成随机数的页面 启动tomcat 检查配置并重启 nginx -tc /etc/nginx/nginx.conf nginx -s reload -c /etc/nginx/nginx.conf 关闭动态请求:这里直接把tomcat停掉 再次访问:动…