题目链接 bzoj4001: [TJOI2015]概率论 题解 生成函数+求导 设\(g(n)\)表示有\(n\)个节点的二叉树的个数,\(g(0) = 1\) 设\(f(x)\)表示\(n\)个节点的二叉树叶子节点的个数,\(f_0 = 0,f_1 = 1\) 那么\(ans = \frac{f_i}{g_i}\) 对于\(g_i\) 考虑有一颗\(n\)个点的二叉树,由于左右字数都是二叉树,枚举左右子树的点数 \[g_n = \sum_{i = 0}^{n - 1}g_ig_{n - i -…
设f(n)为n个节点的二叉树个数,g(n)为n个节点的二叉树的叶子数量之和.则答案为g(n)/f(n). 显然f(n)为卡特兰数.有递推式f(n)=Σf(i)f(n-i-1) (i=0~n-1). 类似地,左子树节点数为i时右子树有f(n-i-1)种情况,那么可以对左子树的叶子节点数之和计数,显然再乘2就是总数了.有递推式g(n)=2Σg(i)f(n-i-1) (i=0~n-1). 因为递推式是卷积形式,考虑生成函数.设F(x).G(x)分别为f(n).g(n)的生成函数(均为无穷级数).则有F…
传送门 生成函数好题. 题意简述:求nnn个点的树的叶子数期望值. 思路: 考虑fnf_nfn​表示nnn个节点的树的数量. 所以有递推式f0=1,fn=∑i=0n−1fifn−1−i(n>0)f_0=1,f_n=\sum_{i=0}^{n-1}f_if_{n-1-i}(n>0)f0​=1,fn​=∑i=0n−1​fi​fn−1−i​(n>0) 正是一个卷积的形式. 那么fnf_nfn​的生成函数F(x)=xF2(x)+1F(x)=xF^2(x)+1F(x)=xF2(x)+1 注意要填上…
题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 题解 生成函数+导数 先考虑节点个数为$n$的二叉树有多少个:$c_0=1,c_i=\sum\limits_{j=0}^{i-1}c_j*c_{i-j-1}$,显然这是Catalan数. 令其生成函数为$F(x)$,由其递推式可以列出方程:$F(x)=xF(x)^2+1$,解得: $F(x)=\frac{1-\sqrt{1-4x}}{2x}…
题目链接 BZOJ4001 题解 Miskcoo 太神了,orz #include<algorithm> #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<map> #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt) #define REP(i,n) for (int…
题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 提示 1<=N<=10^9 设$f[n]$表示$n$个节点能形成二叉树的方案数,$g[n]$表示所有方案的叶子数之和 $ans=\frac{g[n]}{f[n]}$,f$[n]$就是卡特兰数(这是卡特兰数的一个应用) 那么$g[n]$怎么求呢? 假设一种$n$节点二叉树有$k$个叶子,那么$g[n]=\sum k$ 我们将这$k$个叶子中…
Description Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Output 1.000000000 HINT 1<=N<=10^9 Solution 好神仙一个题啊……rqy大爷的证明真的超简单明了QwQ膜拜rqy 首先设$f_n$表示$n$个点的二叉树个数,$g_n$表示$n$个点所有$f_n$棵二叉树的叶节点总数打个表可以发现:$f:1 ~2~ 5~ 14 ~42$$g:…
[BZOJ4001][TJOI2015]概率论(生成函数) 题面 BZOJ 洛谷 题解 这题好仙啊.... 设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶子个数. 最终要求的东西就是\(\frac{f_n}{g_n}\). 考虑这个玩意怎么转移,先考虑二叉树个数,即怎么求\(f_n\). 每次我们认为新加入的点作为根节点,那么接下来只需要枚举其左右子树大小就行了,所以得到: \[g_n=\sum_{i=0}^{n-1}g_ig_{n-1-i}\] 然…
4001: [TJOI2015]概率论 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 262  Solved: 108[Submit][Status][Discuss] Description   Input 输入一个正整数N,代表有根树的结点数   Output 输出这棵树期望的叶子节点数.要求误差小于1e-9   Sample Input 1 Sample Output 1.000000000 HINT 1<=N<=10^9 Source…
[TJOI2015]概率论 史上最短黑题 看起来一脸懵逼,没有取模,1e-9 根据期望定义,发现 分母是一个卡特兰数,,,,不能直接算 所以考虑怎么消掉一些东西 gn表示n个点的叶子个数和,fn表示n个点二叉树个数 结论:g(n)=n*f(n-1) 考虑每个n个点的树的叶子,分别拔掉所有k个叶子,给剩下的k个(n-1)个点的树打上标记 那么,g(n)就是n-1个点的所有的树被打的标记之和 一个n-1个点的树,有n个位置可以有叶子,恰好会被打n次标记! 然后,ans(n)=g(n)/f(n),f(…