http://blog.csdn.net/pipisorry/article/details/53001866 绘制ROC曲线 def plotRUC(yt, ys, title=None): ''' 绘制ROC-AUC曲线 :param yt: y真值 :param ys: y预测值 ''' from sklearn import metrics from matplotlib import pyplot as plt f_pos, t_pos, thresh = metrics.roc_cu…
http://blog.csdn.net/pipisorry/article/details/52250760 模型评估Model evaluation: quantifying the quality of predictions 3 different approaches to evaluate the quality of predictions of a model: Estimator score method: Estimators have a score method prov…
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的常见准则有: 1.      均方误差(mean squared error,MSE): 2.      平均绝对误差(mean absolute error,MAE) 3.      R2 score:scikit learn线性回归模型的缺省评价准则,既考虑了预测值与真值之间的差异,也考虑了问题…
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉验证 交叉验证用于评估模型性能和进行参数调优(模型选择).分类任务中交叉验证缺省是采用StratifiedKFold. sklearn.cross_validation.cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jo…
本文内容和代码是接着上篇文章来写的,推荐先看一下哈~ 我们上一篇文章是写了电影推荐的实现,但是推荐内容是否合理呢,这就需要我们对模型进行评估 针对推荐模型,这里根据 均方差 和 K值平均准确率 来对模型进行评估,MLlib也对这几种评估方法都有提供内置的函数 在真实情况下,是要不断地对推荐模型的三个关键参数 rank.iterations.lambda 分别选取不同的值,然后对不同参数生成的模型进行评估,从而选取出最好的模型. 下面就对两种推荐模型评估的方法进行说明~ 1.均方差(MSE) 和…
在sklearn当中,可以在三个地方进行模型的评估 1:各个模型的均有提供的score方法来进行评估. 这种方法对于每一种学习器来说都是根据学习器本身的特点定制的,不可改变,这种方法比较简单.这种方法受模型的影响, 2:用交叉验证cross_val_score,或者参数调试GridSearchCV,它们都依赖scoring参数传入一个性能度量函数.这种方法就是我们下面讨论的使用scoring进行模型的性能评估. 3:Metric方法,Metric有为各种问题提供的评估方法.这些问题包括分类.聚类…
參考:http://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter 三种方法评估模型的预測质量: Estimator score method: Estimators都有 score method作为默认的评估标准,不属于本节内容.详细參考不同estimators的文档. Scoring parameter: Model-evaluation toolsusing cross-validation (…
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import numpy as np from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.grid_search import GridSearchCV from sk…
1.介绍 有三种不同的方法来评估一个模型的预测质量: estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题. Scoring参数:使用cross-validation的模型评估工具,依赖于内部的scoring策略.见下. Metric函数:metrics模块实现了一些函数,用来评估预测误差.见下. 2. scoring参数 模型选择和评估工具,例如: grid_search.GridSearchCV 和 cross…
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的句子,我以自己的理解意译. 翻译自:Scikit Learn:Machine Learning in Python 作者: Fabian Pedregosa, Gael Varoquaux 先决条件 Numpy, Scipy IPython matplotlib scikit-learn 目录 载入…