利用python的pandas库进行数据分组分析十分便捷,其中应用最多的方法包括:groupby.pivot_table及crosstab,以下分别进行介绍. 0.样例数据 df = DataFrame({'key1':['a','a','b','b','a'],'key2':['one','two','one','two','one'],'data1':np.random.randn(5),'data2':np.random.randn(5)}) df #[Out]# data1 data2…
任何分组(groupby)操作都涉及原始对象的以下操作之一.它们是 - 分割对象 应用一个函数 结合的结果 在许多情况下,我们将数据分成多个集合,并在每个子集上应用一些函数.在应用函数中,可以执行以下操作 - 聚合 - 计算汇总统计 转换 - 执行一些特定于组的操作 过滤 - 在某些情况下丢弃数据 下面来看看创建一个DataFrame对象并对其执行所有操作 - import pandas as pd ipl_data = {'Team': ['Riders', 'Riders', 'Devils…
groupby: 分组 melt: 宽表转长表 pivot_table: 长表转宽表,数据透视表 crosstab: 交叉表 / 列联表,主要用于分组频数统计 import numpy as np import pandas as pd df = pd.DataFrame({'key1':['a','a','b','b','a'], 'key2':['one','two','one','two','one'], 'data1':np.random.randn(5), 'data2':np.ran…
Pandas分组运算(groupby)修炼 Pandas的groupby()功能很强大,用好了可以方便的解决很多问题,在数据处理以及日常工作中经常能施展拳脚. 今天,我们一起来领略下groupby()的魅力吧. 首先,引入相关package: import pandas as pd import numpy as np groupby的基础操作 In [2]: df = pd.DataFrame({'A': ['a', 'b', 'a', 'c', 'a', 'c', 'b', 'c'], ..…
数据聚合与分组运算——GroupBy技术(1),有需要的朋友可以参考下. pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片.切块.摘要等操作.根据一个或多个键(可以是函数.数组或DataFrame列名)拆分pandas对象.计算分组摘要统计,如计数.平均值.标准差,或用户自定义函数.对DataFrame的列应用各种各样的函数.应用组内转换或其他运算,如规格化.线性回归.排名或选取子集等.计算透视表或交叉表.执行分位数分析以及其他分组分析. 1.首先来看…
Pycharm 鼠标移动到函数上,CTRL+Q可以快速查看文档,CTR+P可以看基本的参数. apply(),applymap()和map() apply()和applymap()是DataFrame的函数,map()是Series的函数. apply()的操作对象是DataFrame的一行或者一列数据,applymap()是DataFrame的每一个元素.map()也是Series中的每一个元素. apply()对dataframe的内容进行批量处理, 这样要比循环来得快.如df.apply(…
数据分组分析—-groupby 代码功能: 对于综合表格data,基于title进行分组处理,并统计每一组的size,得到的是一个series序列,此序列可以放入索引中使用,index() import pandas as pd unames = ['user_id', 'gender', 'age','occupation','zip'] users = pd.read_table('users.dat', sep='::',header=None, names=unames) rnames…
介绍 也许大多数人都有在Excel中使用数据透视表的经历,其实Pandas也提供了一个类似的功能,名为pivot_table.虽然pivot_table非常有用,但是我发现为了格式化输出我所需要的内容,经常需要记住它的使用语法.所以,本文将重点解释pandas中的函数pivot_table,并教大家如何使用它来进行数据分析. 如果你对这个概念不熟悉,wikipedia上对它做了详细的解释.顺便说一下,你知道微软为PivotTable(透视表)注册了商标吗?其实以前我也不知道.不用说,下面我将讨论…
GroupBy技术 分组运算的过程可以用下面的流程图表示出来 import pandas as pd from pandas import Series import numpy as np df = pd.DataFrame({ 'key1':['a','a','b','b','a'], 'key2':['one','two','one','two','one'], 'data1':np.random.randn(5), 'data2':np.random.randn(5) }) df key…
Pandas分组与聚合 分组 (groupby) 对数据集进行分组,然后对每组进行统计分析 SQL能够对数据进行过滤,分组聚合 pandas能利用groupby进行更加复杂的分组运算 分组运算过程:split->apply->combine 拆分:进行分组的根据 应用:每个分组运行的计算规则 合并:把每个分组的计算结果合并起来 示例代码: import pandas as pd import numpy as np dict_obj = {'key1' : ['a', 'b', 'a', 'b…