sdm SDM 人脸对齐的核心内容很简单,就是特征到偏移量的映射:                                           Ix = R I 是特征,x是映射矩阵,R是偏移量.SDM人脸对齐方法训练的目的就是得到映射矩阵x,步骤如下:       )归一化样本,使样本的尺度统一:       )计算均值人脸:       )将均值人脸,作为估计人脸放在样本上,使均值中心和原始人脸形状中心对齐:       )计算基于每一个均值人脸的标记点的特征,sift,surf或者…
最近组里研究了SDM算法在人脸对齐中的应用,是CMU的论文<Supervised Descent Method and its Applications to Face Alignment>.因为思路简洁巧妙有效,两年下来引用率就有283+了,以后估计1k+,这么有影响力的文章是要学习学习.网上有了相关的原理介绍,例如:http://www.thinkface.cn/thread-2913-1-1.html.自己看了有所了解,但不能真正理解原理思路,还是直接看论文为妥. .问题 ).Hessi…
对于face recognition的研究,我是认真的(认真expression,哈哈哈~~~~~~)许久没有写blog了,欢迎一起讨论. SDM(Supvised Descent Method)方法主要是应用在人脸对齐上.SDM本是一种求函数逼近的方法,可以用于最小二乘求解.SDM并非一种人脸对齐方法,只是作者在提出新的人脸对齐方法中运用了自己的最小二乘方法.文章:Supervised Descent Method and its Applications to Face Alignment.…
坐标下降法(coordinate descent method)求解LASSO推导 LASSO在尖点是singular的,因此传统的梯度下降法.牛顿法等无法使用.常用的求解算法有最小角回归法.coordinate descent method等. 由于coordinate descent method是相对较简单的做法,放在第一个介绍. 坐标下降法思想 坐标下降法基于的思想很简单,就是当面对最小化一个多元函数的问题时,我们每一次迭代的时候只改变一个目标变量的值.也就是固定其他变量不动,只在该变量…
When performing inverse kinematics (IK) on a complicated bone chain, it can become too complex for an analytical solution. Cyclic Coordinate Descent (CCD) is an alternative that is both easy to implement and efficient to process.逆运动学问题一般采用解析法和基于Jacob…
本文译自<Deep learning for understanding faces: Machines may be just as good, or better, than humans>.为了方便,文中论文索引位置保持不变,方便直接去原文中找参考文献. 近些年深度卷积神经网络的发展将各种目标检测和识别问题大大的向前推进了不少.这同时也得益于大量的标注数据集和GPU的使用,这些方面的发展使得在无限制的图片和视频中理解人脸,自动执行诸如人脸检测,姿态估计,关键点定位和人脸识别成为了可能.本…
利用Landmarks进行人脸对齐裁剪是人脸检测中重要的一个步骤.效果如下图所示: 基本思路为: a.人脸检测 人脸的检测不必多说了,基本Cascade的方式已经很不错了,或者用基于HOG/FHOG的SVM/DPM等.这些在OpenCV,DLIB都有. b.在检测到的人脸上进行Landmarks检测,获得一系列的Landmark点 对齐算法很多,特别是前几年人脸对齐获得了巨大的成功. [1].One Millisecond Face Alignment with an Ensemble of R…
源地址:http://www.learnopencv.com/facial-landmark-detection/#comment-2471797375 OCTOBER 18, 2015 BY SATYA MALLICK 51 COMMENTS Facial landmark detection using Dlib (left) and CLM-framework (right). Who sees the human face correctly: the photographer, the…
参考来源:http://www.cnblogs.com/lanye/p/5312620.html 人脸姿态估计:pitch,yaw,roll三种角度,分别代表上下翻转,左右翻转,平面内旋转的角度.       人脸姿态估计的方法有基于模型的方法,基于表观的方法,基于分类的方法等等.其中,基于模型的方法得到的效果最好,因为其得到的人脸姿态是连续的,而另外两种,是离散的,并且很耗时间.人脸姿态估计算法一般当做很多人脸对齐相关论文的副产品被提出,近期,比较“出名”的人脸对齐论文主要来自于CVPR,IC…
引自:http://blog.csdn.net/taily_duan/article/details/54584040 人脸对齐之SDM(Supervised Descent Method) 人脸对齐之LBF(Local Binary Features) 人脸识别技术大总结(1):Face Detection & Alignment Real-time Expression Transfer for Facial Reenactment https://www.youtube.com/watch…
引自:http://blog.csdn.net/linolzhang/article/details/55271815 人脸检测 早已比较成熟,传统的基于HOG+线性分类器 的方案检测效果已经相当不错,我们也不再过多讨论,本节重点讨论人脸特征点对齐,特征点对齐主要应用在确定关键点的位置上,并进一步用于人脸姿态或状态的判断(用在辅助驾驶.疲劳检测.AR等). 下面介绍常用的人脸对齐算法: • ASM ASM(Active Shape Model)是指主观形状模型,即通过形状模型 对 目标物体进行抽…
@http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer format than this) maintained by @karpathy NEW: This year I also embedded the (1,2-gram) tfidf vectors of all papers with t-sne and placed them in an interf…
From:  http://www.pamitc.org/cvpr15/program.php Official Program for CVPR 2015 Monday, June 8 8:30am-8:40am Ballrooms A,B,C Rooms 302,304,306 Opening Remarks from Conference Chairs The opening remarks will be made from Ballrooms A,B,C, but a live vid…
cvpr所有文章 http://cs.stanford.edu/people/karpathy/cvpr2015papers/ CNN Hypercolumns for Object Segmentation and Fine-Grained LocalizationBharath Hariharan, Pablo Arbeláez, Ross Girshick, Jitendra Malik Improving Object Detection With Deep Convolutional…
what has been done: This paper proposed a novel Deep Supervised Hashing method to learn a compact similarity-presevering binary code for the huge body of image data. Data sets:  CIFAR-10: 60,000 32*32 belonging to 10 mutually exclusively categories(6…
solver : {‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’}, default: ‘liblinear’ Algorithm to use in the optimization problem. For small datasets, ‘liblinear’ is a good choice, whereas ‘sag’ is faster for large ones. For multiclass problems, only ‘newton-cg…
最陡下降法(steepest descent method)又称梯度下降法(英语:Gradient descent)是一个一阶最优化算法. 函数值下降最快的方向是什么?沿负梯度方向  d=−gk…
http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answering Monday, June 27th, 9:00AM - 10:05AM. These papers will also be presented at the following poster session 1   Deep Compositional Captioning: Descr…
What are the advantages of different classification algorithms? For instance, if we have large training data set with approx more than 10000 instances and more than 100000 features ,then which classifier will be best to choose for classification Want…
CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - 10:05AM. These papers will also be presented at the following poster session 1 Deep Compositional Captioning: Describing Novel Object Categories Witho…
##Linear Regression with One Variable Linear regression predicts a real-valued output based on an input value. We discuss the application of linear regression to housing price prediction, present the notion of a cost function, and introduce the gradi…
What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-beginner-train-for-machine-learning-contests 链接内容总结: "学习任何一门学科,framework是必不可少的东西.没有framework的东西,那是研究." -- Jason Hawk One thing is for sure; you ca…
When a golf player is first learning to play golf, they usually spend most of their time developing a basic swing. Only gradually do they develop other shots, learning to chip, draw and fade the ball, building on and modifying their basic swing. In a…
1. 线性模型简介 0x1:线性模型的现实意义 在一个理想的连续世界中,任何非线性的东西都可以被线性的东西来拟合(参考Taylor Expansion公式),所以理论上线性模型可以模拟物理世界中的绝大多数现象.而且因为线性模型本质上是均值预测,而大部分事物的变化都只是围绕着均值而波动,即大数定理. 事物发展的混沌的线性过程中中存在着某种必然的联结.事物的起点,过程,高潮,衰退是一个能被推演的过程.但是其中也包含了大量的偶然性因素,很难被准确的预策,只有一个大概的近似范围.但是从另一方面来说,偶然…
Ha, it's English time, let's spend a few minutes to learn a simple machine learning example in a simple passage. Introduction What is machine learning? you design methods for machine to learn itself and improve itself. By leading into the machine lea…
原文: INVERSE KINEMATICS AND GEOMETRIC CONSTRAINTS FOR ARTICULATED FIGURE MANIPULATION http://graphics.ucsd.edu/courses/cse169_w04/welman.pdf 译者: crazii http://www.cnblogs.com/crazii/p/4662199.html [译者: 根据个人需要, 只仔细阅读了部分内容, 所以只翻译 基本概念(3.1)和 CCD相关(4.2, 4…
[AAAI 2014] Supervised Hashing via Image Representation Learning [paper] [code] Rongkai Xia , Yan Pan, Hanjiang Lai, Cong Liu, Shuicheng Yan. 1. Overcome 之前的哈希方法,大都使用手工的图像特征(如GIST等)作为图像的特征表达, 但是这些手工特征是采用无监督的方式提取的,难以很好得保存原始图片的语义信息.而深度深度神经网络可以很好得表达图像特征…
Brief History of Machine Learning My subjective ML timeline Since the initial standpoint of science, technology and AI, scientists following Blaise Pascal and Von Leibniz ponder about a machine that is intellectually capable as much as humans. Famous…
CVPR2015 Papers震撼来袭! CVPR 2015的文章可以下载了,如果链接无法下载,可以在Google上通过搜索paper名字下载(友情提示:可以使用filetype:pdf命令). Going Deeper With ConvolutionsChristian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke…
BRIEF HISTORY OF MACHINE LEARNING My subjective ML timeline (click for larger) Since the initial standpoint of science, technology and AI, scientists following Blaise Pascal and Von Leibniz ponder about a machine that is intellectually capable as muc…