该论文的地址是:https://arxiv.org/pdf/1609.07720.pdf segmatch是一个提供车辆的回环检测的技术,使用提取和匹配分割的三维激光点云技术.分割的例子可以在下面的图片中看到. 该技术是基于在车辆附近提取片段(例如车辆.树木和建筑物的部分),并将这些片段与从目标地图中提取的片段相匹配.分段匹配可以直接转化为精确的定位信息,从而实现精确的三维地图构造和定位.在先前记录的部分(白色)和最近观察到的部分(彩色)之间,匹配的段的实例用绿色线显示在下面的图像中. 该方法依…
目录 摘要 1.引言: 2.背景 2.1 数据集 2.2评价指标 3.3D点云分割 3.1 3D语义分割 3.1.1 基于投影的方法 多视图表示 球形表示 3.1.2 基于离散的方法 稠密离散表示 稀疏的离散表示 3.1.3 混合方法 3.1.4 基于点的方法 逐点MLP方法 点卷积方法 基于RNN方法 基于图方法 3.2 实例分割 3.2.1 基于候选框的方法 3.2.2 不需要候选框的方法 3.3 部件分割 3.4 总结 4. 结论 3D点云深度学习:综述(3D点云分割部分) Deep Le…
转载请注明出处,谢谢 原创作者:Mingrui 原创链接:https://www.cnblogs.com/MingruiYu/p/12634631.html 写在前面 最近在搞本科毕设,关于基于深度学习的 SLAM 回环检测方法.期间,为了锻炼自己的工程实现能力,(也为了增添毕设的工作量,显得不那么水),我自己写了一个简单的双目 SLAM 系统,其中嵌入了一种基于深度学习的轻量级回环检测模块 (https://github.com/rpng/calc),目前这种方法是我找到的最轻量级且效果不错的…
上一篇提到,无论在单目.双目还是RGBD中,追踪得到的位姿都是有误差的.随着路径的不断延伸,前面帧的误差会一直传递到后面去,导致最后一帧的位姿在世界坐标系里的误差有可能非常大.除了利用优化方法在局部和全局调整位姿,也可以利用回环检测(loop closure)来优化位姿. 这件事情就好比一个人走在陌生的城市里,一开始还能分清东南西北,但随着在小街小巷转来转去,已经不知道自己在什么地方了.通过认真辨识周边环境,他可以建立起局部的地图信息(局部优化).再回忆以前走过的路径,他可以纠正一些以前的地图信…
本文作者任旭倩,公众号:计算机视觉life成员,由于格式原因,公式显示可能出问题,建议阅读原文链接:综述 | SLAM回环检测方法 在视觉SLAM问题中,位姿的估计往往是一个递推的过程,即由上一帧位姿解算当前帧位姿,因此其中的误差便这样一帧一帧的传递下去,也就是我们所说的累积误差.一个消除误差有效的办法是进行回环检测.回环检测判断机器人是否回到了先前经过的位置,如果检测到回环,它会把信息传递给后端进行优化处理.回环是一个比后端更加紧凑.准确的约束,这一约束条件可以形成一个拓扑一致的轨迹地图.如果…
词袋模型是一种文本表征方法,它应用到计算机视觉领域就称之为BoF(bag of features),通过BoF可以把一张图片表示成一个向量.DBoW2是一个视觉词袋库,它提供了生成和使用词典的接口,但它并不等同于slam中的回环检测. 回环检测属于slam前端,也是vslam三大模块(视觉里程计,回环,优化)之一.回环检测的主要目的是确认当前位置是否曾经到达过.它接收一段图片序列,然后绘制拓扑地图,故又称之为拓扑制图.基于BoF的回环检测是目前比较流行的回环解决方案,诸如IAB-MAP,FAB-…
//链表回环检测问题 #include<iostream> #include<cstdlib> using namespace std; ; struct node { int data; node *next; }; node *test1=new node(); node *test2=new node();//1->ring;2->no ring node* vis[M]; bool test_ring(const node *head) { node *p=he…
之前研究过一些回环检测的内容,首先要看的自然是用词袋回环的鼻祖和正当继承人(没有冒犯VINS和LDSO的意思)ORB-SLAM.下面是我的代码注释.因为代码都是自己手打的,不是在源码上注释的,所以一些我觉得不是太重要的被略过了,可能也会有一些typo. ORB的回环策略比较偏向seq-SLAM的思路,通过共视帧打包的关系,比较每个包的相似值,而非只是关注单帧和单帧的匹配,这个思路是比较合适的,但是VINS和LDSO两位后来者用实际行动证明了我不太看中你这种思路,两个都没有用.后续我会介绍一些VI…
什么是回环检测? 在讲解回环检测前,我们先来了解下回环的概念.在视觉SLAM问题中,位姿的估计往往是一个递推的过程,即由上一帧位姿解算当前帧位姿,因此其中的误差便这样一帧一帧的传递下去,也就是我们所说的累计误差. 我们的位姿约束都是与上一帧建立的,第五帧的位姿误差中便已经积累了前面四个约束中的误差.但如果我们发现第五帧位姿不一定要由第四帧推出来,还可以由第二帧推算出来,显然这样计算误差会小很多,因为只存在两个约束的误差了.像这样与之前的某一帧建立位姿约束关系就叫做回环.回环通过减少约束数,起到了…
回环检测 VINS回环检测与全局优化都在pose_graph.cpp内处理.首先在pose_graph_node加载vocabulary文件给BriefDatabase用,如果要加载地图,会loadPoseGraph, 它会读取一些列文件,然后加载所有的Keyframe.同时在经过一系列回调函数得到建立新的Keyframe所用的数据之后,构造Keyframe,且在其内重新提取更多的特征点并计算描述子,然后pose_graph调用addKeyframe.loadKeyframe 和addKeyfr…