区别: 几种朴素贝叶斯分类器的区别在于对于分布的假设,即假设满足的形式. 一.高斯NB 导入 from sklearn.naive_bayes import GaussianNB 假设特征的似然函数满足,  和 采用“最大似然估计” 二.Multinomial NB 导入 from sklearn.naive_bayes import MultinomialNB 特征是离散值,通常用样本的概率去估计 为避免有的特征值缺省,一般对样本的概率做Laplace平滑:(a=1时) 三.Bernoulli…
这里再重复一下标题为什么是"使用"而不是"实现": 首先,专业人士提供的算法比我们自己写的算法无论是效率还是正确率上都要高. 其次,对于数学不好的人来说,为了实现算法而去研究一堆公式是很痛苦的事情. 再次,除非他人提供的算法满足不了自己的需求,否则没必要"重复造轮子". 下面言归正传,不了解贝叶斯算法的可以去查一下相关资料,这里只是简单介绍一下: 1.贝叶斯公式: P(A|B)=P(AB)/P(B) 2.贝叶斯推断: P(A|B)=P(A)×P(…
贝叶斯分类器的分类 根据实际处理的数据类型, 可以分为离散型贝叶斯分类器和连续型贝叶斯分类器, 这两种类型的分类器, 使用的计算方式是不一样的. 贝叶斯公式 首先看一下贝叶斯公式 $ P\left ( y|x \right ) = \frac{P\left ( x|y \right ) * P\left ( y \right )}{\sum_{i=1}^{n}P\left ( x|y_{i} \right )*P\left ( y_{i} \right )} $ 其推导很简单, 因为 P(yx)…
原型 class sklearn.naive_bayes.MultinomialNB(alpha=1.0, fit_prior=True, class_prior=None) 参数 Parameters: alpha : float, optional (default=1.0) Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing). fit_prior : boolean, optional (default=…
优点Naive Bayes classifiers tend to perform especially well in one of the following situations: When the naive assumptions actually match the data (very rare in practice) For very well-separated categories, when model complexity is less important For v…
背景:广告商往往想知道关于一个人的一些特定人口统计信息,以便能更好地定向推销广告. 我们将分别从美国的两个城市中选取一些人,通过分析这些人发布的信息,来比较这两个城市的人们在广告用词上是否不同.如果结论确实不同,那么他们各自常用的词是那些,从人们的用词当中,我们能否对不同城市的人所关心的内容有所了解. 1.收集数据:导入RSS源 使用python下载文本,在http://code.google.com/p/feedparser/下浏览相关文档,安装feedparse,首先解压下载的包,并将当前目…
作者: 寒小阳 && 龙心尘 时间:2016年2月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50629608 http://blog.csdn.net/longxinchen_ml/article/details/50629613 声明:版权所有,转载请联系作者并注明出处 1.引言 前两篇博文介绍了朴素贝叶斯这个名字读着"萌蠢"但实际上简单直接高效的方法,我们也介绍了一下贝叶斯方法的一些细节.按照老规矩…
Naive Bayes-朴素贝叶斯 Bayes' theorem(贝叶斯法则) 在概率论和统计学中,Bayes' theorem(贝叶斯法则)根据事件的先验知识描述事件的概率.贝叶斯法则表达式如下所示 P(A|B) – 在事件B下事件A发生的条件概率 P(B|A) – 在事件A下事件B发生的条件概率 P(A), P(B) – 独立事件A和独立事件B的边缘概率 顺便提一下,上式中的分母P(B)可以根据全概率公式分解为: Bayesian inferenc(贝叶斯推断) 贝叶斯定理的许多应用之一就是…
http://blog.csdn.net/han_xiaoyang/article/details/50629608 作者: 寒小阳 && 龙心尘 时间:2016年2月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50629608 http://blog.csdn.net/longxinchen_ml/article/details/50629613 声明:版权所有,转载请联系作者并注明出处 1.引言 前两篇博文介绍了朴素贝叶…
朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同.比如决策树,KNN,逻辑回归,支持向量机等,他们都是判别方法,也就是直接学习出特征输出Y和特征X之间的关系,要么是决策函数,要么是条件分布.但是朴素贝叶斯却是生成方法,该算法原理简单,也易于实现. 1,基本概念 朴素贝叶斯:贝叶斯分类时一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类.而朴素贝叶斯分类时贝叶斯分类中…