准备工作: 1.安装VMware Workstation Pro 2.新建三个虚拟机,安装centOS7.0 版本不限 配置工作: 1.准备三台服务器(nameNode10.dataNode20.dataNode30)2.配置三台机器网络ip分别为(192.168.18.10.192.168.18.20.192.168.18.30) 2.1 进入/etc/sysconfig/network-scripts 修改 ifcfg-ens33 文件,定义网卡 信息如下,三台机器都要配置 ONBOOT=y…
2015年元旦,好好学习,天天向上.良好的开端是成功的一半,任何学习都不能中断,只有坚持才会出结果.继续学习Hadoop.冰冻三尺,非一日之寒! 经过Hadoop的伪分布集群环境的搭建,基本对Hadoop有了一个基础的了解.但是还是有一些理论性的东西需要重复理解,这样才能彻底的记住它们.个人认为重复是记忆之母.精简一下: NameNode:管理集群,并且记录DataNode文件信息: SecondaryNameNode:可以做冷备份,对一定范围内的数据作快照性备份: DataNode:存储数据:…
随着毕业设计的进行,大学四年正式进入尾声.任你玩四年的大学的最后一次作业最后在激烈的选题中尘埃落定.无论选择了怎样的选题,无论最后的结果是怎样的,对于大学里面的这最后一份作业,也希望自己能够尽心尽力,好好做.正是因为选题和hadoop有关,现在正式开始学习hadoop.将笔记整理于此,希望与志同道合的朋友共同交流. 作者:itRed 邮箱:it_red@sina.com 个人博客链接:http://www.cnblogs.com/itred 好了,废话不多说.进入正题!开始hadoop的学习.…
紧接着<Hadoop入门学习笔记---part3>中的继续了解如何用java在程序中操作HDFS. 众所周知,对文件的操作无非是创建,查看,下载,删除.下面我们就开始应用java程序进行操作,前提是按照<Hadoop入门学习笔记---part2>中的已经在虚拟机中搭建好了Hadoop伪分布环境:并且确定现在linux操作系统中hadoop的几个进程已经完全启动了. 好了,废话不多说!实际的例子走起. 在myeclipse中新建一个java工程: 在项目工程中新建一个lib包用于存放…
在<Hadoop入门学习笔记---part1>中感觉自己虽然总结的比较详细,但是始终感觉有点凌乱.不够系统化,不够简洁.经过自己的推敲和总结,现在在此处概括性的总结一下,认为在准备搭建hadoop环境时,需要在linux机器上做一些设置,在搭建Hadoop集群环境前,需要在本地机器上做以下设置: 修改ip地址: 关闭防火墙: Hostname的修改: Ssh自动登陆的设置(也即:免密码登录): **关于以上操作的详细命令可以查看上一篇博客<Hadoop入门学习笔记---part1>…
说明:hdfs:nn单点故障,压力过大,内存受限,扩展受阻.hdfs ha :主备切换方式解决单点故障hdfs Federation联邦:解决鸭梨过大.支持水平扩展,每个nn分管一部分目录,所有nn共享dn资源.使用JN集群保证数据一致性,使用zk集群解决主备切换 1.若使用主备节点,常常存在的问题:强一致性,若一致性.强一致性(同步):nn主节点必须等到nn副本返回成功后,才能向客户端返回成功.主和副本之间可能会有如网络延迟.阻塞等问题,就造成了nn的不可用,违背了HA初衷.弱一致性(异步):…
一.为何要学习Hadoop? 这是一个信息爆炸的时代.经过数十年的积累,很多企业都聚集了大量的数据.这些数据也是企业的核心财富之一,怎样从累积的数据里寻找价值,变废为宝炼数成金成为当务之急.但数据增长的速度往往比cpu和内存性能增长的速度还要快得多.要处理海量数据,如果求助于昂贵的专用主机甚至超级计算机,成本无疑很高,有时即使是保存数据,也需要面对高成本的问题,因为具有海量数据容量的存储设备,价格往往也是天文数字.成本和IT能力成为了海量数据分析的主要瓶颈. Hadoop这个开源产品的出现,打破…
Week2 学习笔记 Hadoop核心组件 Hadoop HDFS(分布式文件存储系统):解决海量数据存储 Hadoop YARN(集群资源管理和任务调度框架):解决资源任务调度 Hadoop MapReduce(分布式计算框架):解决海量数据计算 安装hadoop环境 集群角色规划 服务器 运行角色 node1 namenode datanode resourcemanager nodemanager node2 secondarynamenode datanode nodemanager n…
http://hadoop.apache.org/docs/r1.2.1/api/index.html 适当的利用 null 在map中可以实现对文件的简单处理,如排序,和分集合输出等. 需要关心的内容 一个节点面对的是一个Map任务,一个Map任务面对的是一个split文件,一个map方法面对的是一个split文件生成的键值对. mapper类中map方法的输入是InputFormat的ReadeRecord类读取到的键值对 学习一周之后问题总结: 1.实验时使用的文件过小,大量小文件问题,需…
什么是mapreduce 首先让我们来重温一下 hadoop 的四大组件:HDFS:分布式存储系统MapReduce:分布式计算系统YARN: hadoop 的资源调度系统Common: 以上三大组件的底层支撑组件,主要提供基础工具包和 RPC 框架等 Mapreduce 是一个分布式运算程序的编程框架,是用户开发“基于 hadoop 的数据分析 应用”的核心框架Mapreduce 核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的 分布式运算程序,并发运行在一个 hadoop 集…