pandas筛选数据。】的更多相关文章

https://jingyan.baidu.com/article/0eb457e508b6d303f0a90572.html 假如我们想要筛选D列数据中大于0的行:df[df['D']>0] 使用&符号可以实现多条件筛选,当然是用"|"符号也可以实现多条件,只不过他是或的关系.df[df['D']<0 | df['D']<0] 假如我们只需要A和B列数据,而D和C列数据都是用于筛选的,可以这样写:只返回了AB两列数据df[['A','B']][df['D']…
使用Pandas对数据进行筛选和排序 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas对数据进行筛选和排序 目录: sort() 对单列数据进行排序 对多列数据进行排序 获取金额最小前10项 获取金额最大前10项 Loc 单列数据筛选并排序 多列数据筛选并排序 按筛选条件求和(sumif, sumifs) 按筛选条件计数(countif, countifs) 按筛选条件计算均值(averageif, averageifs) 按筛选条件获取最大值和最小值 筛选和排序是Excel中使用频率…
参考:pandas筛选出表中满足另一个表所有条件的数据 参考:pandas:匹配两个dataframe 使用 pd.merge 来实现 on 表示查询的 columns,如果都有 id,那么这是很好的区别项,找到 id 相同的进行merge. >>> import numpy as np >>> import pandas as pd >>> data1 = { 'one': pd.Series([1,2,3]), 'two': pd.Series([…
目录 1. 数据文件 2. 读数据 3. 查找数据 4. 替换数据 4.1 一对一替换 4.2 多对一替换 4.3 多对多替换 5. 插入数据 6. 删除数据 6.1 删除列 6.2 删除行 7. 处理缺失值 7.1 数据准备 7.2 查看缺失值 7.3 删除缺失值 7.4 缺失值的填充 8. 处理重复值 8.1 删除重复行 8.2 删除某一列中的重复值 8.3 获取唯一值 9 排序数据 9.1 用sort_values()函数排序数据 9.2 用rank()函数获取数据的排名 10 rank(…
最近做一个系列博客,跟着stackoverflow学Pandas. 以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序: https://stackoverflow.com/questions/tagged/pandas?sort=votes&pageSize=15 Select rows from a DataFrame based on values in a column -pandas 筛选 https://stackoverflow.…
# -*- coding: utf-8 -*-import pandas as pd"""(1)利用pandas读取csv文件"""def readcsv(path): df=pd.read_csv(path,sep=',') print("1 打印索引:",df.index) print("2 前五行",df[0:5]) print("3 只选择第五行",df.loc[5]) prin…
# 导入相关库 import numpy as np import pandas as pd 在数据处理过程中,经常会遇到要筛选不同要求的数据.通过 Pandas 可以轻松时间,这一篇我们来看下如何使用 Pandas 来完成数据筛选吧 创建数据 index = pd.Index(data=["Tom", "Bob", "Mary", "James", "Andy", "Alice"],…
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法combine_first()方法:合并重叠数据. pandas.merge()方法:数据库风格的合并   例如,通过merge()方法将两个DataFrame合并: on='name'的意思是将name列当作键: 默认情况下,merge做的是内连接(inner),即键的交集. 其他方式还有左连接(l…
使用Pandas进行数据提取 本文转载自:蓝鲸的网站分析笔记 原文链接:使用python进行数据提取 目录 set_index() ix 按行提取信息 按列提取信息 按行与列提取信息 提取特定日期的信息 按日期汇总信息 resample() 数据提取是分析师日常工作中经常遇到的需求.如某个用户的贷款金额,某个月或季度的利息总收入,某个特定时间段的贷款金额和笔数,大于5000元的贷款数量等等.本篇文章介绍如何通过python按特定的维度或条件对数据进行提取,完成数据提取需求. 准备工作 首先是准备…
使用Pandas进行数据匹配 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas进行数据匹配 目录 merge()介绍 inner模式匹配 lefg模式匹配 right模式匹配 outer模式匹配 NaN值匹配模式 Pandas中的merge函数类似于Excel中的Vlookup,可以实现对两个数据表进行匹配和拼接的功能.与Excel不同之处在于merge函数有4种匹配拼接模式,分别为inner,left,right和outer模式. 其中inner为默认的匹配模式.本篇文章我们将介绍m…