摘要 这篇文章主要总结文本中的对抗样本,包括器中的攻击方法和防御方法,比较它们的优缺点. 最后给出这个领域的挑战和发展方向. 1 介绍 对抗样本有两个核心:一是扰动足够小:二是可以成功欺骗网络. 所有DNNs-based的系统都有受到对抗攻击的潜在可能. 很多NLP任务使用了DNN模型,例如:文本分类,情感分析,问答系统,等等. 以上是一个对抗攻击实例.除此之外,对抗样本还会毒害网络环境,阻碍对恶意信息[21]-[23]的检测. 除了对比近些年的对抗攻击和防御方法,此外,文章还会讲CV和NLP中…