感受野RF的计算】的更多相关文章

参考博客:https://blog.csdn.net/wgx571859177/article/details/80983043 设第N层的感受野为N_RF,卷积核尺寸为kernel_size,步长为stride,则第N-1层的感受野计算公式为:N-1_RF = (N_RF - 1) * stride + kernel_size: 一般地我们从top层一层层往下直到Input_img计算最终的感受野:…
1 感受野的概念 从直观上讲,感受野就是视觉感受区域的大小.在卷积神经网络中,感受野的定义是 卷积神经网络每一层输出的特征图(feature map)上的像素点在原始图像上映射的区域大小. 2 感受野大小的计算 感受野计算时有下面的几个情况需要说明: a)第一层卷积层的输出特征图像素的感受野的大小等于滤波器的大小: b)深层卷积层的感受野大小和它之前所有层的滤波器大小和步长有关系: c)计算感受野大小时,忽略了图像边缘的影响,即不考虑padding的大小. 此外,关于每一层的strides的说明…
1. 阅读论文:Understanding the Effective Receptive Field in Deep Convolutional Neural Networks 理解感受野 定义:receptive field, or field of view (感受野) A unit in convolutional networks only depends on a region of the input. This region in the input is the recepti…
在这个案例中: 1. datetime.datetime.strptime(data, '%Y-%m-%d') # 由字符串格式转换为日期格式 2. pd.get_dummies(features)  # 将数据中的文字标签转换为one-hot编码形式,增加了特征的列数 3. rf.feature_importances 探究了随机森林样本特征的重要性,对其进行排序后条形图 4.fig.autofmt_xdate(rotation=60)  # 对图中的X轴标签进行60的翻转 代码: 第一步:数…
先说明下,这里的代码流程是修改过的Speex流程,但与Speex代码差异不大,应该不影响阅读.   (1)用RemoveDCoffset函数进行去直流 (2)远端信号预加重后放入x[i+frame_size],近端信号预加重后放入input缓冲区 (3)前M-1帧的远端频域信号移位,为当前帧频域信号腾出空间 (4)用spx_fft函数进行FFT变换,变换后的系数存在X中 (5)计算当前远端信号当前帧的方差Sxx.(去直流操作后,意味着均值可以视为零) (6)当前远端时域信号移位,x[i] = x…
<深度学习基础> 卷积神经网络,循环神经网络,LSTM与GRU,梯度消失与梯度爆炸,激活函数,防止过拟合的方法,dropout,batch normalization,各类经典的网络结构,各类优化方法 1.卷积神经网络工作原理的直观解释 https://www.zhihu.com/question/39022858 简单来说,在一定意义上,训练CNN就是在训练每一个卷积层的滤波器.让这些滤波器组对特定的模式有高的激活能力,以达到CNN网络的分类/检测等目的. 2.卷积神经网络的复杂度分析 ht…
Pixel Recurrent Neural Networks 目前主要在用的文档存放: https://www.yuque.com/lart/papers/prnn github存档: https://github.com/lartpang/Machine-Deep-Learning 介绍 Google DeepMind generative model 引言 生成图像建模是无监督学习中的核心问题. 在无监督学习中,自然图像的分布建模是一个具有里程碑意义的问题.此任务需要一个图像模型,它同时具…
这个结构是10年Quoc V.Le等人提出的,这里的tiled,按照 Lecun的解释是Locally-connect non shared.即是局部连接,而且不是共享的,这是针对于权重来说的.本文翻译如有错误,还望指正,谢谢!!这篇论文是10年的,相比较来说四年的东西,比较旧了,可是这个tcnn在ng的ufldl最后也有提及(只有目录部分,ng没写完),而且也算是个cnn的变化,不过看效果没有获得the state of art.因为在cifar-10数据集上当前的效果都达到了91%,而且NI…
直接上效果图如下 public partial class WaveChartUserCtrl : UserControl { Color axisColor = Color.FromArgb(69, 200, 255);//坐标颜色 Color scaleColor = Color.FromArgb(129, 137, 156);//刻度颜色 Font axisFont = new Font("宋体", 9, FontStyle.Bold);//坐标字体 /// <summar…
端到端学习几何和背景的深度立体回归 摘要     本文提出一种新型的深度学习网络,用于从一对矫正过的立体图像回归得到其对应的视差图.我们利用问题(对象)的几何知识,形成一个使用深度特征表示的代价量(cost volume).我们通过对这一匹配代价卷使用3D卷积来学习结合上下文信息.利用本文提出的一种可微分的soft argmin操作可以对匹配代价卷回归得到视差值,这使得我们可以直接端到端地训练我们的网络达到亚像素级别的精度,而不需要任何后处理和正则化.我们在Scene Flow和 KITTI数据…