SparkSQL(Spark用于处理结构化数据的模块) 通过SparkSQL导入的数据可以来自MySQL数据库.Json数据.Csv数据等,通过load这些数据可以对其做一系列计算 下面通过程序代码来详细查看SparkSQL导入数据并写入到ES中: 数据集:北京市PM2.5数据 Spark版本:2.3.2 Python版本:3.5.2 mysql-connector-java-8.0.11 下载 ElasticSearch:6.4.1 Kibana:6.4.1 elasticsearch-spa…
背景   这一篇可以说是“Hive JSON数据处理的一点探索”的兄弟篇.   平台为了加速即席查询的分析效率,在我们的Hadoop集群上安装部署了Spark Server,并且与我们的Hive数据仓库共享元数据.也就是说,我们的用户即可以通过HiveServer2使用Hive SQL执行MapReduce分析数据,也可以使用SparkServer使用Spark SQL(Hive SQL)执行Spark Application分析数据.   两者除去MapReduce和Spark Applica…
随着互联网.移动互联网和物联网的发展,我们已经切实地迎来了一个大数据 的时代.大数据是指无法在一定时间内用常规软件工具对其内容进行抓取.管理和处理的数据集合,对大数据的分析已经成为一个非常重要且紧迫的需求.目前对大数据的分析工具,首选的是Hadoop/Yarn平台,但目前对大数据的实时分析工具,业界公认最佳为Spark.Spark是基于内存计算的大数据并行计算框架,Spark目前是Apache软件基金会旗下,顶级的开源项目,Spark提出的DAG作为MapReduce的替代方案,兼容HDFS.H…
概述 Spark SQL是用于结构化数据处理的Spark模块.它提供了一个称为DataFrames的编程抽象,也可以作为分布式SQL查询引擎. Spark SQL也可用于从现有的Hive安装中读取数据.有关如何配置此功能的更多信息,请参阅Hive Tables部分. DataFrames DataFrame是组织成命名列的数据的分布式集合.它在概念上等同于关系数据库中的表或R / Python中的数据框架,但是在更加优化的范围内.DataFrames可以从各种来源构建,例如:结构化数据文件,Hi…
[From] https://blog.csdn.net/u010990043/article/details/82842995 最近整理了一下spark SQL内置配.加粗配置项是对sparkSQL 调优性能影响比较大的项,小伙伴们按需酌情配置.后续会挑出一些通用调优配置,共大家参考.有不正确的地方,欢迎大家在留言区留言讨论. 配置项 默认值 概述 spark.sql.optimizer.maxIterations 100 sql优化器最大迭代次数 spark.sql.optimizer.in…
Spark支持多种的编程语言 对比scala和Java编程上节课的计数程序.相比之下,scala简洁明了. Hadoop的IO开销大导致了延迟高,也就是说任务和任务之间涉及到I/O操作.前一个任务完成之前没有写入硬盘,下一个任务无法从硬盘当中获取数据,从而导致了这个高延迟. Spark与Hadoop的对比:Spark也是MapReduce,但是它的编程模式比Hadoop的MapReduce更灵活,而且会支持多种数据集的操作.其次呢,它不是从磁盘中读取数据,它是从内存中读取数据.我把结果中间结果写…
许多分布式计算系统都可以实时或接近实时地处理大数据流.本文将对三种Apache框架分别进行简单介绍,然后尝试快速.高度概述其异同. Apache Storm 在Storm中,先要设计一个用于实时计算的图状结构,我们称之为拓扑(topology).这个拓扑将会被提交给集群,由集群中的主控节点(master node)分发代码,将任务分配给工作节点(worker node)执行.一个拓扑中包括spout和bolt两种角色,其中spout发送消息,负责将数据流以tuple元组的形式发送出去:而bolt…
许多分布式计算系统都可以实时或接近实时地处理大数据流.本文将对三种Apache框架分别进行简单介绍,然后尝试快速.高度概述其异同. Apache Storm 在Storm中,先要设计一个用于实时计算的图状结构,我们称之为拓扑(topology).这个拓扑将会被提交给集群,由集群中的主控节点(master node)分发代码,将任务分配给工作节点(worker node)执行.一个拓扑中包括spout和bolt两种角色,其中spout发送消息,负责将数据流以tuple元组的形式发送出去:而bolt…
基本信息 作者: 高彦杰 丛书名:大数据技术丛书 出版社:机械工业出版社 ISBN:9787111483861 上架时间:2014-11-5 出版日期:2014 年11月 开本:16开 页码:255 版次:1-1 所属分类: 计算机 > 数据库 > 数据库存储与管理 编辑推荐 根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,已经BDAS生态系统的相关技术. 内容简介 书籍计算机书籍 这是一本依据最新技术版本,系统.全面.详细讲解Spark…
全球首部全面介绍Spark及Spark生态圈相关技术的技术书籍 俯览未来大局,不失精细剖析,呈现一个现代大数据框架的架构原理和实现细节 透彻讲解Spark原理和架构,以及部署模式.调度框架.存储管理及应用监控等重要模块 Spark生态圈深度检阅:SQL处理Shark和Spark SQL.流式处理Spark Streaming.图计算Graphx及内存文件系统Tachyon 内容简介 书籍计算机书籍 <Spark大数据处理技术>以Spark 0.9版本为基础进行编写,是一本全面介绍Spark及S…
内容简介 <Spark大数据处理:技术.应用与性能优化>根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,以及BDAS生态系统的相关技术. 作为一个基于内存计算的大数据并行计算框架,Spark不仅很好地解决了数据的实时处理问题,而且保证了高容错性和高可伸缩性.具体来讲,它有如下优势: 打造全栈多计算范式的高效数据流水线 轻量级快速处理 易于使用,支持多语言 与HDFS等存储层兼容 社区活跃度高 -- Spark已经在全球范围内广泛使用,无论…
内容简介 <Spark大数据处理:技术.应用与性能优化>根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,以及BDAS生态系统的相关技术. 作为一个基于内存计算的大数据并行计算框架,Spark不仅很好地解决了数据的实时处理问题,而且保证了高容错性和高可伸缩性.具体来讲,它有如下优势: 打造全栈多计算范式的高效数据流水线 轻量级快速处理 易于使用,支持多语言 与HDFS等存储层兼容 社区活跃度高 -- Spark已经在全球范围内广泛使用,无论…
许多分布式计算系统都可以实时或接近实时地处理大数据流.下面对三种Apache框架分别进行简单介绍,然后尝试快速.高度概述其异同. Apache Storm 在Storm中,先要设计一个用于实时计算的图状结构,我们称之为拓扑(topology).这个拓扑将会被提交给集群,由集群中的主控节点(master node)分发代码,将任务分配给工作节点(worker node)执行.一个拓扑中包括spout和bolt两种角色,其中spout发送消息,负责将数据流以tuple元组的形式发送出去:而bolt则…
下载地址.请联系群主 第1章 初探大数据 本章将介绍为什么要学习大数据.如何学好大数据.如何快速转型大数据岗位.本项目实战课程的内容安排.本项目实战课程的前置内容介绍.开发环境介绍.同时为大家介绍项目中涉及的Hadoop.Hive相关的知识 第2章 Spark及其生态圈概述 Spark作为近几年最火爆的大数据处理技术,是成为大数据工程师必备的技能之一.本章将从如下几个方面对Spark进行一个宏观上的介绍:Spark产生背景.特点.发展史.Databricks官方调查结果.Spark与Hadoop…
即席查询普通查询 Load Data1) RDD DataFrame/Dataset2) Local Cloud(HDFS/S3) 将数据加载成RDDval masterLog = sc.textFile("file:///home/hadoop/app/spark-2.1.0-bin-2.6.0-cdh5.7.0/logs/spark-hadoop-org.apache.spark.deploy.master.Master-1-hadoop001.out")val workerLog…
用户行为日志:用户每次访问网站时所有的行为数据(访问.浏览.搜索.点击...)     用户行为轨迹.流量日志   日志数据内容: 1)访问的系统属性: 操作系统.浏览器等等 2)访问特征:点击的url.从哪个url跳转过来的(referer).页面上的停留时间等 3)访问信息:session_id.访问ip(访问城市)等   2013-05-19 13:00:00     http://www.taobao.com/17/?tracker_u=1624169&type=1      B58W4…
大数据技术正飞速地发展着,催生出一代又一代快速便捷的大数据处理引擎,无论是Hadoop.Storm,还是后来的Spark.Flink.然而,毕竟没有哪一个框架可以完全支持所有的应用场景,也就说明不可能有任何一个框架可以完全取代另一个.今天,将从几个项出发着重对比Spark与Flink这两个大数据处理引擎,探讨其两者的区别.   一.Spark与Flink几个主要项目的对比与分析 1.性能对比 测试环境: CPU:7000个 内存:单机128GB 版本:Hadoop 2.3.0,Spark 1.4…
本文讲解Spark的结构化数据处理,主要包括:Spark SQL.DataFrame.Dataset以及Spark SQL服务等相关内容.本文主要讲解Spark 1.6.x的结构化数据处理相关东东,但因Spark发展迅速(本文的写作时值Spark 1.6.2发布之际,并且Spark 2.0的预览版本也已发布许久),因此请随时关注Spark SQL官方文档以了解最新信息. 文中使用Scala对Spark SQL进行讲解,并且代码大多都能在spark-shell中运行,关于这点请知晓. 概述 相比于…
第1章 初探大数据 本章将介绍为什么要学习大数据.如何学好大数据.如何快速转型大数据岗位.本项目实战课程的内容安排.本项目实战课程的前置内容介绍.开发环境介绍.同时为大家介绍项目中涉及的Hadoop.Hive相关的知识 第2章 Spark及其生态圈概述 Spark作为近几年最火爆的大数据处理技术,是成为大数据工程师必备的技能之一.本章将从如下几个方面对Spark进行一个宏观上的介绍:Spark产生背景.特点.发展史.Databricks官方调查结果.Spark与Hadoop的对比.Spark开发…
第0章 预备知识0.1 Scala0.1.1 Scala 操作符0.1.2 拉链操作0.2 Spark Core0.2.1 Spark RDD 持久化0.2.2 Spark 共享变量0.3 Spark SQL0.3.1 RDD.DataFrame 与 DataSet0.3.2 DataSet 与 RDD 互操作0.3.3 RDD.DataFrame 与 DataSet 之间的转换0.3.4 用户自定义聚合函数(UDAF)0.3.5 开窗函数0.4 Spark Streaming0.4.1 Dst…
导读 引言 环境准备 安装步骤 1.下载地址 2.开始下载 3.解压spark 4.配置环境变量 5.配置 spark-env.sh 6.启动spark服务 7.测试spark stay hungry stay foolish. 引言 2012年,UC Berkelye 的ANPLab研发并开源了新的大数据处理框架Spark.其核心思想包括两方面:一方面对大数据处理框架的输入/输出.中间数据进行建模,将这些数据抽象为统一的数据结构,命名为弹性分布式数据集(Resilent Distributed…
第1章 Spark SQL 概述1.1 什么是 Spark SQL1.2 RDD vs DataFrames vs DataSet1.2.1 RDD1.2.2 DataFrame1.2.3 DataSet1.2.4 三者的共性1.2.5 三者的区别第2章 执行 Spark SQL 查询2.1 命令行查询流程2.2 IDEA 创建 Spark SQL 程序第3章 Spark SQL 解析3.1 新的起始点 SparkSession3.2 创建 DataFrames3.3 DataFrame 常用操…
Spark SQL是Spark框架的重要组成部分, 主要用于结构化数据处理和对Spark数据执行类SQL的查询. DataFrame是一个分布式的,按照命名列的形式组织的数据集合. 一张SQL数据表可以映射为一个DataFrame对象,DataFrame是Spark SQL中的主要数据结构. SqlContext实例是DataFrame和Spark SQL的操作入口, pyspark交互环境中已初始化了一个sqlContext实例, 在提交任务脚本时需要使用一个SparkContext来初始化:…
大数据处理肯定是分布式的了,那就面临着几个核心问题:可扩展性,负载均衡,容错处理.Spark是如何处理这些问题的呢?接着上一篇的"动手写WordCount",今天要做的就是透过这个大数据界的HelloWorld来看看Spark隐藏了哪些魔法. 请各位看官,带着分布式的问题往下看. 分布式架构 大数据时代,单机装下PB级的数据,然后在可接受的时间内处理完,不可能,所以一定是分布式的. ▶ 分布式存储 HDFS(Hadoop Distributed File System)是最常见的,和S…
Spark是主流的大数据处理框架,具体有啥能耐,相信不需要多说.我们开门见山,直接动手写大数据界的HelloWorld:WordCount. 先上完整代码,看看咋样能入门. import org.apache.spark.SparkConf import org.apache.spark.SparkContext object WordCount { def main(args: Array[String]) { val conf = new SparkConf() conf.setAppNam…
在上一篇文章中,我们讲了Spark大数据处理的可扩展性和负载均衡,今天要讲的是更为重点的容错处理,这涉及到Spark的应用场景和RDD的设计来源. Spark的应用场景 Spark主要针对两种场景: 机器学习,数据挖掘,图应用中常用的迭代算法(每一次迭代对数据执行相似的函数) 交互式数据挖掘工具(用户反复查询一个数据子集) Spark在spark-submit外,还提供了spark-shell,它就是专门用来做交互数据挖掘的工具 MapReduce等框架并不明确支持迭代中间结果/数据子集的共享,…
在从WordCount看Spark大数据处理的核心机制(2)中我们看到Spark为了支持迭代和交互式数据挖掘,而明确提出了内存中可重用的数据集RDD.RDD的只读特性,再加上粗粒度转换操作形成的Lineage,形成了它独立的高效容错机制. RDD的粗粒度的转换是否有足够的表达能力,来支持多种多样的应用需求呢?先看看RDD究竟有哪些API,然后看它们如何模拟Google经典的MapReduce和图数据处理框架Pregel. RDD的API 转换 def map[U](f: T => U): RDD…
1. spark 是什么? >Apache Spark 是一个类似hadoop的开源高速集群运算环境  与后者不同的是,spark更快(官方的说法是快近100倍).提供高层JAVA,Scala,PythonI ,R API接口.而且提tools:Spark SQL for SQL 处理结构化数据, MLlib for machine learning, GraphX for graph processing, and Spark Streaming. 2. spark streaming Spa…
通过该案例,给出一个比较完整的.复杂的数据处理案例,同时给出案例的详细解析. 人力资源系统的管理内容组织结构图 1) 人力资源系统的数据库与表的构建. 2) 人力资源系统的数据的加载. 3) 人力资源系统的数据的查询. 职工基本信息 职工姓名,职工id,职工性别,职工年龄,入职年份,职位,所在部门id Michael,1,male,37,2001,developer,2Andy,2,female,33,2003,manager,1Justin,3,female,23,2013,recruitin…
一.Spark介绍 Apache Spark is a fast and general-purpose cluster computing system. It provides high-level APIs in Java, Scala, Python and R, and an optimized engine that supports general execution graphs. It also supports a rich set of higher-level tools…