(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\bf A}$ 可逆, 则 $|{\bf A}^2-{\bf B}|>0$. 证明: 由 ${\bf A}^T=-{\bf A}$ 知 $$\bex |{\bf A}|=|{\bf A}^T|=(-1)^n |{\bf A}|. \eex$$ 故 $n$ 为偶数 (否则, $|{\bf A}|=0$,…
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n(n-1)\ (n\geq 3)$.…
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{\n f}_{W^{1,q}}+\sen{f}_{L^\infty}} }. \eex$$ $$\bex m\geq 3\ra \sen{\n f}_{L^\infty}\leq C\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2} \sex{1+\sen{\n f}_{H^…
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &\quad s>0,\ q\in [1,\infty],\quad p_1,r_1\in [1,\infty],\ \cfrac{1}{p}=\cfrac{1}{p_1}+\cfrac{1}{p_2}=\cfrac{1}{r_1}+\cfrac{1}{r_2}\\ &\ra \sen{fg…
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq \sen{D^k f}_{L^p}\leq C2^{jk} \sen{f}_{L^p}; \eex$$ $$\bex \supp \hat u\subset \sed{|\xi|\leq 2^j} \ra \sen{f}_{L^q}\leq C2^{jn\sex{\frac{1}{p}-\frac{…
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{f}_{\dot B^0_{\infty,\infty}}}\ln \sex{1+\sen{f}_{H^s}},\quad s>\cfrac{3}{2}. \eex$$ see [D. Chae, P. Degond, J.G. Liu, Well-posedness for Hall-magnetoh…
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac{1}{b-a}\int_a^b f^p(t)\rd t. \eex$$ 试求 $\dps{\vlm{p}x_p}$. 解答: 由 H\"older 不等式, $$\beex \bea f^p(x_p)&=\cfrac{1}{b-a}\int_a^b f^p(t)\cdot 1\rd t\\…
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$\bex n\pi+\cfrac{\pi}{2}-\cfrac{1}{n\pi} <x_n<n\pi+\cfrac{\pi}{2}. \eex$$ 证明: 设 $f(x)=\sin x-x\cos x$, 则 $$\bex f'(x)=x\sin x\sedd{\ba{ll} >0,&…
试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hansschwarzkopf): 对任何$x>0$, 有 \[x\ln\left(1+\frac{1}{x}\right)=x\ln\frac{1+\frac{1}{2x+1}}{1-\frac{1}{2x+1}} =2x\left(\frac{1}{2x+1}+\frac{1}{3(2x+1)^3}+\ldots…
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.…
设幂级数 $\dps{g(x)=\sum_{n=0}^\infty a_nx^n}$ 在 $|x|<1$ 内收敛, 且 $\dps{\sum_{n=0}^\infty a_n=s}$ 收敛. 则 $$\bex \lim_{x\to 1^-} g(x)=s. \eex$$ 证明: 记 $s_n=a_0+\cdots +a_n$, 则 $\dps{\vlm{n}s_n=s}$. 写出 $$\beex \bea \sum_{k=0}^n a_kx^k &=a_0+\sum_{k=1}^n (s_k…
$$\bex \sin(x+y)=\sin x\cos y+\cos x\sin y. \eex$$ Ref. [Proof Without Words: Sine Sum Identity, The College Mathematics Journal].…
$$\bex \frac{\sin x}{x}\nearrow. \eex$$ Ref. [Proof Without Words: Monotonicity of $\sin x/x$ on $(0,\pi/2)$, The College Mathematics Journal]…
$$\bex \frac{\tan x}{x}\nearrow. \eex$$ Ref. [Proof Without Words: Monotonicity of $\tan x/x$ on $(0,\pi/2)$, The College Mathematics Journal].…
(AMM. Problems and Solutions. 2015. 03) Let $\sed{a_n}$ be a monotone decreasing sequence of real numbers that converges to $0$. Prove that $$\bex \vsm{n}a_n<\infty \eex$$ if and only if $a_n=O(1/\ln n)$ and $\dps{\vsm{n}(a_n-a_{n+1}) \ln n<\infty}$…
设 $f$ 是 $\bbR$ 上周期为 $1$ 的连续可微函数, 满足 $$\bee\label{141102_f} f(x)+f\sex{x+\frac{1}{2}}=f(2x),\quad\forall\ x. \eee$$ 试证: $f(x)=0$, $\forall\ x$. 证明: (from xida that this proof comes from ``Proofs of the book'' 4th edition, Chapter 23) 设 $g(x)=f'(x)$, 则…
对任两酉阵 $U,V$, 有 $$\bex \sen{A}_F=\sen{UAV}_F. \eex$$ 事实上, $$\beex \bea \sen{UAV}_F^2&=\tr(V^*A^*U^*\cdot UAV)\\ &=\tr (V^*A^*AV)\\ &=\tr(AVV^*A^*)\quad\sex{\tr(AB)=\tr(BA)}\\ &=\tr(AA^*)\\ &=\tr(A^*A)\\ &=\sen{A}_F^2. \eea \eeex$$…
试求 $$\bex \vlm{n}n^2\sex{x^\frac{1}{n}-x^\frac{1}{n+1}},\quad x>0. \eex$$ 解答: $$\beex \bea \mbox{原极限} &=\vlm{n}n^2\cdot x^\xi\ln x\sex{\frac{1}{n}-\frac{1}{n+1}}\quad\sex{\frac{1}{n+1}<\xi<\frac{1}{n}}\\ &=\ln x. \eea \eeex$$…
$$\bex n\geq 2, 1\leq p<n\ra \sen{f}_{L^\frac{np}{n-p}(\bbR^n)} \leq C\prod_{k=1}^n \sen{\p_k f}_{L^p(\bbR^n)}^\frac{1}{n}. \eex$$…
Suppose that $f\in L^2$, $g\in \scrD'$, if $$\bex f=g,\mbox{ in }\scrD', \eex$$ then $f=g\in L^2$. In fact, $\scrD\subset L^2 \ra L^2\subset\scrD'$. Thus $h=f-g=0\in \scrD'$, the zero element is the same in $L^2$ and $\scrD'$, and hence $h=f-g=0\in L…
设 $H^{-1}$ 是 $H^1_0$ 的对偶空间, 定义域为 $[0,1]$. 试证: (1) $\sed{h\sin (2\pi hx);\ h>0}$ 在 $H^{-1}$ 中有界; (2) 试求 $h\sin (2\pi hx)$ 在 $H^{-1}$ 中的弱极限. 证明: (1) 对 $\forall\ f\in H^1_0$, $\sen{f}_{H^1}\leq 1$, $$\beex \bea \sef{h\sin (2\pi hx),f(x)}&=\int_0^1 h\s…
$$\bex \n\cdot{\bf b}=0\ra \n\times [(\n\times {\bf b})\times {\bf b}]=\n\times [\n\cdot ({\bf b}\otimes {\bf b})]. \eex$$ 证明: 右端第一个分量为 $$\beex \bea &\quad \sum_i \p_2(\p_i(b_ib_3))-\p_3(\p_i(b_ib_2))\\ &=\sum_i \p_2(b_i\p_ib_3)-\p_3(b_i\p_ib_2)\\…
Suppose that $$\bex \cfrac{\rd f}{\rd t}+h\leq gf\quad (f,g,h\geq 0,\ t\in [0,T]). \eex$$ Then for $t\in [0,T]$, $$\bex f(t)+\int_0^t h(s)\rd s \leq f(0)\sez{ 1+\int_0^t g(s)\rd s\cdot \exp\sex{\int_0^t g(s)\rd s} }. \eex$$…
$$\bex 0<p<\infty\ra H_p=\dot F^0_{p,2};\quad BMO=\dot F^0_{\infty,2}. \eex$$ see [H. Triebel, Theory of function spaces I, Birkh\"auser,Basel, 1983] Page 244.…
设 $f(x)$ 二阶连续可导, $f(0)=f(1)=0$, $\dps{\max_{0\leq x\leq 1}f(x)=2}$. 证明: $$\bex \min_{0\leq x\leq 1}f''(x)\leq -16. \eex$$ 证明: 设 $$\bex \xi\in (0,1),\st f(\xi)=\max_{0\leq x\leq 1}f(x)=2\ra f'(\xi)=0. \eex$$ 在 $\xi$ 处由 Taylor 展式, $$\beex \bea 0=f(0)=f…
设 $f(x)$ 在 $[a,b]$ 上一阶连续可导, $f(a)=0$. 证明: $$\bex \int_a^b f^2(x)\rd x\leq \cfrac{(b-a)^2}{2}\int_a^b [f'(x)]^2\rd x -\cfrac{1}{2}\int_a^b [f'(x)]^2 (x-a)^2\rd x. \eex$$ 证明: $$\beex \bea \int_a^b f^2(x)\rd x &=\int_a^b \sez{\int_a^xf'(t)\rd t}^2\rd x\…
设 $a_n>0$, $S_n=a_1+a_2+\cdots+a_n$, 级数 $\dps{\vsm{n}a_n}$ 发散, 证明: $\dps{\vsm{n}\cfrac{a_n}{S_n}}$ 发散. 证明: 对任意固定的 $n$, 由 $S_{n+p}\to \infty\ (p\to\infty)$ 知 $$\bex \exists\ p,\st \cfrac{S_n}{S_{n+p}}<\cfrac{1}{2}. \eex$$ 而 $$\bex \sum_{k=n+1}^{n+p}\…
函数 $f(x)$ 在 $[0,1]$ 上单调减, 证明: 对于任何 $\al\in (0,1)$, $$\bex \int_0^\al f(x)\rd x\geq \al \int_0^1 f(x)\rd x. \eex$$ 证明: 设 $$\bex F(x)=\cfrac{\int_0^\al f(x)\rd x}{\al}, \eex$$ 则 $$\bex F'(x)=\cfrac{f(\al)\al-\int_0^\al f(x)\rd x}{\al^2} =\cfrac{\int_0^…
设 $f(x)$ 在 $[0,1]$ 上连续, 在 $(0,1)$ 内可导, 且 $f(0)=f(1)=0$, $f\sex{\cfrac{1}{2}}=1$. 证明:对于任意的实数 $\lm$, 一定存在 $\xi\in (0,1)$, 使得 $$\bex f'(\xi)-\lm f(\xi)+\lm f(\xi)=1. \eex$$ 证明: 设 $F(x)=e^{-\lm x}[f(x)-x]$, 则 $$\bex F(0)=0,\quad F\sex{\cfrac{1}{2}}=\cfra…
设 $f(x)$ 在 $\bbR$ 上连续, 又 $$\bex \phi(x)=f(x)\int_0^x f(t)\rd t \eex$$ 单调递减. 证明: $f\equiv 0$. 证明: 设 $$\bex g(x)=\cfrac{\sez{\int_0^x f(t)\rd t}^2}{2}, \eex$$ 则 $g'(x)=\phi(x)$ 递减, 而 $$\bex g'(x)\sedd{\ba{ll} \geq g'(0)=0,&x<0,\\ \leq g'(0)=0,&x&…