一:Bagging与随机森林 与Boosting族算法不同的是,Bagging和随机森林的个体学习器之间不存在强的依赖关系,可同时生成并行化的方法. Bagging算法 bagging的算法过程如下: 1:从原始样本集中使用Bootstraping自助采样的方法随机抽取n个训练样本,共进行k轮抽取,得到k个训练集.(k个训练集之间相互独立,元素可以有重复)2:对于k个训练集,我们训练k个模型(这k个模型可以根据具体问题而定,比如决策树,knn等)3:对于分类问题:由k个模型的预测结果投票表决产生…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
本文为senlie原创,转载请保留此地址:http://www.cnblogs.com/senlie/ 决策树---------------------------------------------------------------------1.描述:以树为基础的方法可以用于回归和分类.树的节点将要预测的空间划分为一系列简单域划分预测空间的规则可以被建模为一棵树,所以这种方法也叫决策树方法bagging,随机森林,boosting 是多棵决策树组合起来采用投票方式产生一个预测结果的方法机制…
随机森林(Random Forest)是一种Bagging(Bootstrap Aggregating)集成算法,在样本随机(样本扰动)的基础上,进一步运用特征随机(属性扰动)的机制,得到比一般的Bagging集成更好的效果. 要理解随机森林,需要理解以下几点: 1.什么是自助采样(Bootstrap Sampling)? 2.什么是Bagging集成? 3.随机森林的基学习器是什么 4.随机森林的“随机”体现在哪里? 5.随机森林如何防止过拟合? 一.自助采样 自助采样是用自助法进行模型评估时…
讲授集成学习的概念,Bootstrap抽样,Bagging算法,随机森林的原理,训练算法,包外误差,计算变量的重要性,实际应用 大纲: 集成学习简介 Boostrap抽样 Bagging算法 随机森林的基本原理 训练算法 包外误差 计算变量的重要性 实验环节 实际应用 随机森林是一种集成学习的算法,构建在bootstrap采样基础之上的,bagging算法基于boostrap采样,与之对应的是boosting算法.随机森林是多颗决策树的集成,由于采用了bootstrip采样,在训练时有一部分样本…
笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评价模型的方式. 常见的应用在监督学习算法中的是计算平均绝对误差(MAE).平均平方差(MSE).标准平均方差(NMSE)和均值等,这些指标计算简单.容易理解:而稍微复杂的情况下,更多地考虑的是一些高大上的指标,信息熵.复杂度和基尼值等等. 本篇可以用于情感挖掘中的监督式算法的模型评估,可以与博客对着看:R语言…
在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合.本文就对集成学习中Bagging与随机森林算法做一个总结. 随机森林是集成学习中可以和梯度提升树GBDT分庭抗礼的算法,尤其是它可以很方便的并行训练,在如今大数据大样本的的时代很有诱惑力. 1.  bagging的原理 在集成学习原理小结中,我们给Bagging画了下面一张原理图. 从上图可以看出,…
Bagging与随机森林算法原理总结 在集成学习原理小结中,我们学习到了两个流派,一个是Boosting,它的特点是各个弱学习器之间存在依赖和关系,另一个是Bagging,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合,本文就对集成学习中的Bagging和随机森林做一个总结. 随机森林是集成学习中可以和GBDT相较衡的算法,尤其是它可以很方便地进行并行训练,在现在的大数据大样本下很有诱惑力. 1.Bagging的原理 在集成学习原理总结的Bagging原理这一块,我们画了这么一张流程图 从…
1. Bagging的策略 从样本集中重采样(有放回)选出\(n\)个样本,定义子样本集为\(D\): 基于子样本集\(D\),所有属性上建立分类器,(ID3,C4.5,CART,SVM等): 重复以上步骤\(m\)步,即获得了\(m\)个分类器: 最后根据这\(m\)个分类器进行投票,决定输入样本属于哪一类. 2. 随机森林 随机森林在Bagging基础上做了修改: 从样本中重复自抽样(Bootstrap)选出\(n\)个样本,定义子样本集为\(D\): 基于样本集\(D\),从所有属性中随机…
集成学习通过将多个学习器进行结合,常可获得比单一学习器显著优越的泛化性能.这对“弱学习器”尤为明显,因此集成学习的很多理论研究都是针对弱学习器进行的,而基学习器有时也被直接称为弱学习器.虽然从理论上来说使用弱学习器集成足以获得好的性能,但在实践中出于种种考虑,例如希望使用较少的个体学习器,或是重用关于常见学习器的一些经验等,人们往往会使用比较强的学习器.当然,还得看实践的结果,有时也不一定集成相对强的学习器效果就会有多好. bagging的策略 1)bootstrap aggregation 2…