https://blog.csdn.net/qq_20195745/article/details/82453589 贝叶斯神经网络简介 对于一个神经网络来说,最为核心的是如何根据训练集的数据,得到各层的模型参数,使得Loss最小,因其强大的非线性拟合能力而在各个领域有着重要应用.而其问题是在数据量较少的情况下存在严重的过拟合现象,对于获得数据代价昂贵的一些课题比如车辆控制等领域,应用存在局限性. 贝叶斯神经网络的优点是可以根据较少的数据得到较为solid的模型,而且得到的是各层参数的分布(一般…
对于一个n随机变量的联合分布,一般需要2**n-1个参数来表示这个分布.但是,我们可以通过随机变量之间的独立性,减少参数的个数. naive Beyes model: Bayesian Networks: 有向无环图(directed acyclic graph, DAG) I-MAP:就是一个图G的独立性关系构成的集合是一个概率分布的独立性关系构成集合的子集.就是说这个图G在某种程度上可以等价于这个分布,但是这个图G上的边可能有冗余. I-MAP to Factorization: 一个满足I…
摘要:常规的神经网络权重是一个确定的值,贝叶斯神经网络(BNN)中,将权重视为一个概率分布.BNN的优化常常依赖于重参数技巧(reparameterization trick),本文对该优化方法进行概要介绍. 论文地址:http://proceedings.mlr.press/v37/blundell15.pdf 网络权重的点估计 常规神经网络可以基于MLE或MAP对权重作点估计. 基于MLE(maximum likelihood estimation): 基于MAP(maximum a pos…
  本文简单介绍什么是贝叶斯深度学习(bayesian deep learning),贝叶斯深度学习如何用来预测,贝叶斯深度学习和深度学习有什么区别.对于贝叶斯深度学习如何训练,本文只能大致给个介绍.(不敢误人子弟)   在介绍贝叶斯深度学习之前,先来回顾一下贝叶斯公式. 贝叶斯公式 \[p(z|x) = \frac{p(x, z)}{p(x)} = \frac{p(x|z)p(z)}{p(x)} \tag{1}\] 其中,\(p(z|x)\) 被称为后验概率(posterior),\(p(x,…
主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以及它和最小二乘分类的关系 (Fisher分类是最小二乘分类的特例)2) 概率生成模型的分类模型3) 概率判别模型的分类模型4) 全贝叶斯概率的Laplace近似 需要注意的是,有三种形式的贝叶斯:1) 全贝叶斯2) 经验贝叶斯3) MAP贝叶斯我们大家熟知的是 MAP贝叶斯 MAP(poor man…
先说说他们的产品:企业免疫系统(基于异常发现来识别威胁) 可以看到是面向企业内部安全的! 优点整个网络拓扑的三维可视化企业威胁级别的实时全局概述智能地聚类异常泛频谱观测 - 高阶网络拓扑;特定群集,子网和主机事件可搜索的日志和事件重播历史数据设备和外部IP的整体行为的简明摘要专为业务主管和安全分析师设计100%的能见度 企业免疫系统是世界上最先进的网络防御机器学习技术.受到人体免疫系统自我学习智能的启发,这种新技术在复杂和普遍的网络威胁的新时代中,使组织自我保护方式发生了根本转变. 人体免疫系统…
1 贝叶斯网络在地学中的应用 1 1.1基本原理及发展过程 1 1.2 具体的研究与应用 4 2 BP神经网络在地学中的应用 6 2.1BP神经网络简介 6 2.2基本原理 7 2.3 在地学中的具体应用与研究 9 结论 11 参考文献 12 1 贝叶斯网络在地学中的应用 贝叶斯网络是一种概率网络,它是基于概率推理的图形化网络,而贝叶斯公式则是这个概率网络的基础.贝叶斯网络是基于概率推理的数学模型,所谓概率推理就是通过一些变量的信息来获取其他的概率信息的过程,基于概率推理的贝叶斯网络(Bayes…
目前在研究Automated Machine Learning,其中有一个子领域是实现网络超参数自动化搜索,而常见的搜索方法有Grid Search.Random Search以及贝叶斯优化搜索.前两者很好理解,这里不会详细介绍.本文将主要解释什么是体统(沉迷延禧攻略2333),不对应该解释到底什么是贝叶斯优化. I Grid Search & Random Search 我们都知道神经网络训练是由许多超参数决定的,例如网络深度,学习率,卷积核大小等等.所以为了找到一个最好的超参数组合,最直观的…
一些问题: 1. 什么时候我的问题可以用GLM,什么时候我的问题不能用GLM? 2. GLM到底能给我们带来什么好处? 3. 如何评价GLM模型的好坏? 广义线性回归啊,虐了我快几个月了,还是没有彻底搞懂,看paper看代码的时候总是一脸懵逼. 大部分分布都能看作是指数族分布,广义差不多是这个意思,我们常见的线性回归和logistic回归都是广义线性回归的特例,可以由它推到出来. 参考:线性回归.logistic回归.广义线性模型——斯坦福CS229机器学习个人总结(一) 对着上面的教程,手写了…
Common sense reduced to computation - Pierre-Simon, marquis de Laplace (1749–1827) Inventor of Bayesian inference 贝叶斯方法的逻辑十分接近人脑的思维:人脑的优势不是计算,在纯数值计算方面,可以说几十年前的计算器就已经超过人脑了. 人脑的核心能力在于推理,而记忆在推理中扮演了重要的角色,我们都是基于已知的常识来做出推理.贝叶斯推断也是如此,先验就是常识,在我们有了新的观测数据后,就可以…