#! usr/bin/env python # coding:utf-8 # 2018年7月2日06:48:35 # 2018年7月2日23:11:59 import cv2 import numpy as np import matplotlib.pyplot as plt img = cv2.imread('number.jpg',0) # 其中,0表示将图片以灰度读出来. #### 图像边缘处理sobel细节 sobelx = cv2.Sobel(img,cv2.CV_64F, 1, 0,…
前一段时间实现了Reinhard颜色迁移算法,感觉挺有意思的,然后在代码上随意做了一些更改,有了一些发现,把Lab通道的a通道值改为127左右,可以将绿色改为黄色,而对其他颜色的改动非常小,因此可以将春天的场景变换到秋天去,这里是核心代码: # -*- coding: utf-8 -*- import cv2 image = cv2.imread('test.jpg') image = cv2.cvtColor(image,cv2.COLOR_BGR2LAB) image[:,:,1] = 12…
前提:各种算子不完全区分好坏,但根据我实际操作分析得到,有的算子之间效果大相径庭,但有的也很相似,也就是各有各的用法,这里按 Sobel.Laplace.canny三种算子作比较,看其结果: 一.  Sobel.Laplace.canny边缘提取() Sobel算子边缘提取 注释:gray 灰度转换后的图像,前面省略了一部灰度转换的步骤,后面代码会补上 1,表示x方向的差分阶数,1或0------------------------------>如果只写一个1,代表x方向提取--->1,0 1…
写在前面 HIT大三上学期视听觉信号处理课程中视觉部分的实验三,经过和学长们实验的对比发现每一级实验要求都不一样,因此这里标明了是2019年秋季学期的视觉实验三. 由于时间紧张,代码没有进行任何优化,实验算法仅供参考. 实验要求 对给定的车牌进行车牌识别 实验代码 代码首先贴在这里,仅供参考 源代码 实验代码如下: import cv2 import numpy as np def lpr(filename): img = cv2.imread(filename) # 预处理,包括灰度处理,高斯…
先逼逼两句: 图像是 Web 应用中除文字外最普遍的媒体格式. 流行的 Web 静态图片有 JPEG.PNG.ICO.BMP 等.动态图片主要是 GIF 格式.为了节省图片传输流量,大型互联网公司还会定制特殊格式的图片,WEBP 格式就是一个代表. Python 除了数据分析,做图片处理也是非常好用的. 用 Python 做图片处理,最著名的库就是 PIL(Python Imaging Library)了,支持最新的 Python3,而且有许多新的特性,Pillow也成为了 Python 图片处…
OpenCV图像处理篇之边缘检测算子 转载: http://xiahouzuoxin.github.io/notes/ 3种边缘检测算子 一阶导数的梯度算子 高斯拉普拉斯算子 Canny算子 OpenCV中相关源码 试试身手 3种边缘检测算子 灰度或结构等信息的突变位置是图像的边缘,图像的边缘有幅度和方向属性,沿边缘方向像素变化缓慢,垂直边缘方向像素变化剧烈.因此,边缘上的变化能通过梯度计算出来. 一阶导数的梯度算子 对于二维的图像,梯度定义为一个向量, Gx对于x方向的梯度,Gy对应y方向的梯…
0.引言 利用python开发,借助Dlib库进行人脸识别,然后将检测到的人脸剪切下来,依次排序显示在新的图像上: 实现的效果如下图所示,将图1原图中的6张人脸检测出来,然后剪切下来,在图像窗口中依次输出显示人脸. 图1 原图和处理后得到的图像窗口 1.开发环境 python: 3.6.3 dlib: 19.7 OpenCv, numpy import dlib # 人脸识别的库dlib import numpy as np # 数据处理的库numpy import cv2 # 图像处理的库Op…
0.引言 利用python开发,借助Dlib库捕获摄像头中的人脸,提取人脸特征,通过计算欧氏距离来和预存的人脸特征进行对比,达到人脸识别的目的: 可以自动从摄像头中抠取人脸图片存储到本地: 根据抠取的/已有的同一个人多张人脸图片提取128D特征值,然后计算该人的128D特征均值: 然后和摄像头中实时获取到的人脸提取出的特征值,计算欧氏距离,判定是否为同一张人脸: 效果如下: 图1 摄像头人脸识别效果gif 1.总体流程 先说下 人脸检测 (face detection) 和 人脸识别 (face…
简介:图像梯度可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导. Sobel算子是普通一阶差分,是基于寻找梯度强度.拉普拉斯算子(二阶差分)是基于过零点检测.通过计算梯度,设置阀值,得到边缘图像. 以下各种算子的原理可参考:https://blog.csdn.net/poem_qianmo/article/details/25560901 一.Sobel算子 代码如下: import cv2 as cv #Sobel算子 def sobel_demo(image): grad_…
先在此处先声明,后面学习python+opencv图像处理时均参考这位博主的博文https://blog.csdn.net/u011321546/article/category/7495016/2?,我只是复现和稍微修改一下代码,加深自己印象的同时也督促自己好好学习图像处理,在这里再一次感谢这位博主的博文. 配置好所有环境后,开始利用python+opencv进行图像处理第一步. 读取和显示一张图片: import cv2 as cv src=cv.imread('E:\imageload\e…