【bzoj4869】相逢是问候】的更多相关文章

传送门 题解 扩展欧拉定理. 线段树维护,已经全改到底了的节点就不管,不然暴力修改下去. //Achen #include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> #include<vector> #include<cstdio> #include<queue> #include<cmath> +; #define Fo…
[BZOJ4869]相逢是问候(线段树,欧拉定理) 题面 BZOJ 题解 根据欧拉定理递归计算(类似上帝与集合的正确用法) 所以我们可以用线段树维护区间最少的被更新的多少次 如果超过了\(\varphi\)的限制 就不用再计算了 如果需要计算就每次暴力算 这样的复杂度\(O(nlog^2)\) #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<…
4869: [Shoi2017]相逢是问候 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1313  Solved: 471[Submit][Status][Discuss] Description Informatikverbindetdichundmich. 信息将你我连结.B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以 分为两种:0 l r表示将第l个到第r个数(al,al+1,...,ar)中的每…
相逢是问候 Time Limit: 40 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description Informatikverbindetdichundmich. 信息将你我连结.B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以 分为两种:0 l r表示将第l个到第r个数(al,al+1,...,ar)中的每一个数ai替换为c^ai,即c的ai次方,其中c是 输入的一个常数,也就是执行赋值…
4869: [Shoi2017]相逢是问候 先说点正经的…… 显然做了有限次(我只知道是有限次,而且不会大,别人说是log次?)修改以后会达到不动点,即以后怎么修改都不变了. 然后就随便做了.(3个log不知道是不是暴力啊) 但是需要拓展欧拉定理: p与a不互质时,设c=b mod φ(p)(专门设出来是因为公式不能正常显示),如果b>=φ(p):$a^b ≡ a^{c+φ(p)}$(注意b<φ(p)的时候不能用) 要证明的话可以用数学归纳法证. 可是题目翻车了…… 大家都质疑题目数据有问题…
4869: [Shoi2017]相逢是问候 题意:一个序列,支持区间\(a_i \leftarrow c^{a_i}\),区间求和.在模p意义下. 类似于开根操作,每次取phi在log次后就不变了. 不互质怎么办? 我才知道, \[ n^x \equiv n^{x \mod \varphi(p)\ +\ \varphi(p)} \pmod p,\ x \ge \varphi(p) \] 不要求互质,只要求\(x \ge \varphi(p)\) 然后就很好做了...线段树维护每个点的操作次数和和…
P3747 [六省联考2017]相逢是问候 题目描述 \(\text {Informatik verbindet dich und mich.}\) 信息将你我连结. \(B\) 君希望以维护一个长度为 \(n\) 的数组,这个数组的下标为从 \(1\) 到 \(n\) 的正整数. 一共有 \(m\) 个操作,可以分为两种: \(0\) \(l\) \(r\) 表示将第 \(l\) 个到第 \(r\) 个数\(( a_l,a_{l+1},...a_r )\)中的每一个数\(a_i\)替换为 \(…
4869: [Shoi2017]相逢是问候 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1205  Solved: 409[Submit][Status][Discuss] Description Informatikverbindetdichundmich. 信息将你我连结.B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以 分为两种:0 l r表示将第l个到第r个数(al,al+1,...,ar)中的每…
由扩展欧拉定理,a^(a^(a^(……^x)))%p中x作为指数的模数应该是φ(φ(φ(φ(……p)))),而p取log次φ就会变为1,也即每个位置一旦被修改一定次数后就会变为定值.线段树维护区间剩余修改次数的最大值,暴力修改即可. 可以预处理出每个位置进行k次操作后的值.直接计算是log^3的,会被卡常.考虑类似bsgs的分块,将指数拆成<10000和10000m两部分,预处理后即可O(1)查询,避免每次快速幂. 注意当指数<φ(p)不能加φ(p). #include<iostream…
题目链接 BZOJ4869 题解 这题调得我怀疑人生,,结果就是因为某些地方\(sb\)地忘了取模 前置题目:BZOJ3884 扩展欧拉定理: \[c^a \equiv c^{a \mod \varphi(p) + [a \ge p]p} \pmod p\] 我们发现当我们进行\(0\)操作,就相当于在\(a\)底部添加一层\(c\) 当我们进行得足够多的时候,\(\varphi(p)\)就会取到\(1\),从而不再变化 所以每个位置操作次数其实是有限的,为\(O(logp)\)次 为何是\(O…