Bayesian regression 前面介绍的线性模型都是从最小二乘,均方误差的角度去建立的,从最简单的最小二乘到带正则项的 lasso,ridge 等.而 Bayesian regression 是从 Bayesian 概率模型的角度出发的,虽然最后也会转换成一个能量函数的形式. 从前面的线性模型中,我们都假设如下的关系: y=wx" role="presentation">y=wxy=wx 上面这个关系式其实是直接从值的角度来考虑,其实我们也可以假设如下的关系:…
scikit-learn 是非常优秀的一个有关机器学习的 Python Lib,包含了除深度学习之外的传统机器学习的绝大多数算法,对于了解传统机器学习是一个很不错的平台.每个算法都有相应的例子,既可以对算法有个大概的了解,而且还能熟悉这个工具包的应用,同时也能熟悉 Python 的一些技巧. Ordinary Least Squares 我们先来看看最常见的线性模型,线性回归是机器学习里很常见的一类问题. y(w,x)=w0+w1x1+w2x2+...+wpxp" role="pres…
Lasso regression 今天介绍另外一种带正则项的线性回归, ridge regression 的正则项是二范数,还有另外一种是一范数的,也就是lasso 回归,lasso 回归的正则项是系数的绝对值之和,这种正则项会让系数最后变得稀疏: minw12N‖Xw−y‖22+α‖w‖1" role="presentation">minw12N∥Xw−y∥22+α∥w∥1minw12N|Xw−y|22+α|w|1 其中,N" role="pres…
网易公开课,第4课 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 前面介绍一个线性回归问题,符合高斯分布 一个分类问题,logstic回归,符合伯努利分布 也发现他们有些相似的地方,其实这些方法都是一个更广泛的模型族的特例,这个模型族称为,广义线性模型(Generalized Linear Models,GLMs) The exponential family 为了介绍GLMs,先需要介绍指数族分布(exponential fami…
scikit-learn官网:http://scikit-learn.org/stable/ 通常情况下,一个学习问题会包含一组学习样本数据,计算机通过对样本数据的学习,尝试对未知数据进行预测. 学习问题一般可以分为: 监督学习(supervised learning) 分类(classification) 回归(regression) 非监督学习(unsupervised learning) 聚类(clustering) 监督学习和非监督学习的区别就是,监督学习中,样本数据会包含要预测的标签(…
Introduction 一.Scikit-learning 广义线性模型 From: http://sklearn.lzjqsdd.com/modules/linear_model.html#ordinary-least-squares # 需要明白以下全部内容,花些时间. 只涉及上述常见的.个人相关的算法. Ref: https://www.youtube.com/watch?v=ipb2MhSRGdw 二.方法进化简史 1.1 松弛求解 到 最小二乘 基本上都是解不存在的超定方程组.因此,…
梯度下降 一.亲手实现“梯度下降” 以下内容其实就是<手动实现简单的梯度下降>. 神经网络的实践笔记,主要包括: Logistic分类函数 反向传播相关内容 Link: http://peterroelants.github.io/posts/neural_network_implementation_part01/ 中文版: http://www.jianshu.com/p/0da9eb3fd06b 1. 生成训练数据 由“目标函数+随机噪声”生成. import numpy as np i…
NB: 因为softmax,NN看上去是分类,其实是拟合(回归),拟合最大似然. 多分类参见:[Scikit-learn] 1.1 Generalized Linear Models - Logistic regression & Softmax 感知机采用的是形式最简单的梯度 Perceptron and SGDClassifier share the same underlying implementation.In fact, Perceptron() is equivalent to S…
二分类:Logistic regression 多分类:Softmax分类函数 对于损失函数,我们求其最小值, 对于似然函数,我们求其最大值. Logistic是loss function,即: 在逻辑回归中,选择了 “对数似然损失函数”,L(Y,P(Y|X)) = -logP(Y|X). 对似然函数求最大值,其实就是对对数似然损失函数求最小值. Logistic regression, despite its name, is a linear model for classification…
前面的文章已经介绍了一个回归和一个分类的例子.在逻辑回归模型中我们假设: 在分类问题中我们假设: 他们都是广义线性模型中的一个例子,在理解广义线性模型之前需要先理解指数分布族. 指数分布族(The Exponential Family) 如果一个分布可以用如下公式表达,那么这个分布就属于指数分布族: 公式中y是随机变量:h(x)称为基础度量值(base measure): η称为分布的自然参数(natural parameter),也称为标准参数(canonical parameter): T(…