摘要-本文使用深度学习的方法在大规模MIMO网络的下行链路中执行max-min和max-prod功率分配.更确切地说,与传统的面向优化的方法相比,训练深度神经网络来学习用户设备(UE)的位置和最优功率分配策略之间的映射,然后用于预测新的UE集合的功率分配曲线。与传统的优化定向方法相比,使用深度学习的方法显著提高了功率分配的复杂性-性能折衷。特别地,所提出的方法不需要计算任何统计平均值,而是需要使用标准方法来计算,并且能够保证接近最优的性能. 1 引言 大规模MIMO是指一种无线网络技术,其中基站…