深度学习(五)正则化之L1和L2】的更多相关文章

监督机器学习问题无非就是“minimizeyour error while regularizing your parameters”,也就是在规则化参数的同时最小化误差.最小化误差是为了让我们的模型拟合我们的训练数据,而规则化参数是防止我们的模型过分拟合我们的训练数据.多么简约的哲学啊!因为参数太多,会导致我们的模型复杂度上升,容易过拟合,也就是我们的训练误差会很小.但训练误差小并不是我们的最终目标,我们的目标是希望模型的测试误差小,也就是能准确的预测新的样本.所以,我们需要保证模型“简单”的…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 磐石 介绍 数据科学研究者们最常遇见的问题之一就是怎样避免过拟合.你也许在训练模型的时候也遇到过同样的问题–在训练数据上表现非同一般的好,却在测试集上表现很一般.或者是你曾在公开排行榜上名列前茅,却在最终的榜单排名中下降数百个名次这种情况.那这篇文章会很适合你. 去避免过拟合可以提高我们模型的性能. 在本文中,我们将解释过拟合的概念以及正则化如何帮助克服过拟合问题…
本文从以下六个方面,详细阐述正则化L1和L2: 一. 正则化概述 二. 稀疏模型与特征选择 三. 正则化直观理解 四. 正则化参数选择 五. L1和L2正则化区别 六. 正则化问题讨论 一. 正则化概述 正则化(Regularization),L1和L2是正则化项,又叫做罚项,是为了限制模型的参数,防止模型过拟合而加在损失函数后面的一项. 机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1-norm和ℓ2-norm,中文称作L1正则化和L2正则化,或者…
正则化(Regularization) 概念 L0正则化的值是模型参数中非零参数的个数. L1正则化表示各个参数绝对值之和. L2正则化标识各个参数的平方的和的开方值. L0正则化 稀疏的参数可以防止过拟合,因此用L0范数(非零参数的个数)来做正则化项是可以防止过拟合的. 从直观上看,利用非零参数的个数,可以很好的来选择特征,实现特征稀疏的效果,具体操作时选择参数非零的特征即可.但因为L0正则化很难求解,是个NP难问题,就是难以优化,因此一般采用L1正则化.L1正则化是L0正则化的最优凸近似,比…
神经网络中损失函数后一般会加一个额外的正则项L1或L2,也成为L1范数和L2范数.正则项可以看做是损失函数的惩罚项,用来对损失函数中的系数做一些限制. 正则化描述: L1正则化是指权值向量w中各个元素的绝对值之和; L2正则化是指权值向量w中各个元素的平方和然后再求平方根; 一般都会在正则化项之前添加一个系数,这个系数需要用户设定,系数越大,正则化作用越明显. 正则化作用: L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择,一定程度上,L1也可以防止过拟合;L2正则化可以防止…
https://blog.csdn.net/jinping_shi/article/details/52433975 https://blog.csdn.net/zouxy09/article/details/24971995 一.概括: L1和L2是正则化项,又叫做罚项,是为了限制模型的参数,防止模型过拟合而加在损失函数后面的一项. 二.区别: 1.L1是模型各个参数的绝对值之和. L2是模型各个参数的平方和的开方值. 2.L1会趋向于产生少量的特征,而其他的特征都是0. 因为最优的参数值很大…
机器学习中在为了减小loss时可能会带来模型容量增加,即参数增加的情况,这会导致模型在训练集上表现良好,在测试集上效果不好,也就是出现了过拟合现象.为了减小这种现象带来的影响,采用正则化.正则化,在减小训练样本误差的同时,限制参数的增长,限制参数过多或者过大,从而提高模型的泛化性. 1. L1 正则化 L1 正则化公式也很简单,直接在原来的损失函数基础上加上权重参数的绝对值: 2. L2 正则化 L2 正则化公式非常简单,直接在原来的损失函数基础上加上权重参数的平方和: L1范式和L2范式的区别…
    上一篇写了一下rpc调用过程的实现方式,简单来说就是服务端把实现了接口的结构体对象进行反射,抽取方法,签名,保存,客户端调用的时候go-micro封请求数据,服务端接收到请求时,找到需要调用调用的对象和对应的方法,利用反射进行调用,返回数据. 但是没有说stream的实现方式,感觉单独写一篇帖子来说这个更好一些.上一篇帖子是基础,理解了上一篇,stream实现原理一点即破.先说一下使用方式,再说原理. 当前go-micro对 rpc 调用的方式大概如下: 普通的rpc调用 是这样: 1.…
目录 1. 什么是正则化?正则化有什么作用? 1.1 什么是正则化? 1.2 正则化有什么作用? 2. L1,L2正则化? 2.1 L1.L2范数 2.2 监督学习中的L1.L2正则化 3. L1.L2正则化的作用 3.1 稀疏模型与特征选择--L1 3.2 L1的直观理解 3.3 L2正则化 4. 如何选择正则化参数? Reference   有关机器学习中的L1.L2正则化,有很多的博文都在说这件事情,大致看了相关的几篇博客文章,做下总结供自己学习.当然了,也不敢想象自己能够把相关的知识都搞…
作为损失函数 L1范数损失函数 L1范数损失函数,也被称之为最小绝对值误差.总的来说,它把目标值$Y_i$与估计值$f(x_i)$的绝对差值的总和最小化. $$S=\sum_{i=1}^n|Y_i-f(x_i)|$$ L2范数损失函数 L2范数损失函数,也被称为最小平方误差,总的来说,它把目标值$Y_i$与估计值$f(x_i)$的差值的平方和最小化. $$S=\sum_{i=1}^n(Y_i-f(x_i))^2$$ L1损失函数 L2损失函数 鲁棒 不是很鲁棒 不稳定性 稳定解 可能多个解 总是…