·背景 最近乘闲暇之余初探了HMM(隐马尔科夫模型),觉得还有点意思,但是网上的教程都超级枯草,可读性很差,抄来抄去的,一堆公式仍在你面前,谁能搞的懂(但园内的两篇写的还算不错.真才实学).在熬制3天后,把这篇心得反馈给各位码友,为了更加生动的说明模型,特举例三国杀的"于吉"以便加深各位印象. ·于吉 武将技:[蛊惑]——你可以说出任何一种基本牌或非延时类锦囊牌,并正面朝下使用或打出一张手牌.若无人质疑,则该牌按你所述之牌结算.若有人质疑则亮出验明:若为真,质疑者各失去1点体力:若为假…
Atitit 马尔可夫过程(Markov process) hmm隐马尔科夫. 马尔可夫链,的原理attilax总结 1. 马尔可夫过程1 1.1. 马尔科夫的应用 生成一篇"看起来像文章的随机文本".1 2. 隐马尔科夫过程1 3. 隐马模型基本要素及基本三问题2 4. 维特比算法2 5. 应用 HMM一开始是在信息论中应用的,后来才被应用到自然语言处理还有其他图像识别等各个2 6. 扩展数学之美系列十九 -- 马尔可夫链的扩展 贝叶斯网络 (Bayesian Networks)2…
HMM用于自然语言处理(NLP)中文分词,是用来描述一个含有隐含未知参数的马尔可夫过程,其目的是希望通过求解这些隐含的参数来进行实体识别,说简单些也就是起到词语粘合的作用. HMM隐马尔可夫模型包括: OBS 显现层(observations) States 隐含层 Start_p 初始概率 P(a) Trans_p 转移概率 P(b|a) Emit_p 发射概率 例题:小黑每天根据天气[下雨.晴天]决定当天的活动[散步.购物.清理房间],她有在朋友圈里发了一条信息“我前天在公园散步,昨天购物,…
hmm隐马尔可夫真的那么难吗? 首先上代码 这里是github上的关于hmm的:链接 概率计算问题:前向-后向算法 学习问题:Baum-Welch算法(状态未知) 预测问题:Viterbi算法 https://github.com/TimVerion/HMM_code 需要的理论基础(可以跳过) 信息熵 首先了解一下过去化学学习的熵,热力学中表征物质状态的参量之一,用符号S表示,其物理意义是体系混乱程度的度量.克劳修斯于 1865 年的论文中定义了“熵” ,其中有两句名言:“宇宙的能量是恒定的.…
目录 隐马尔可夫模型HMM学习导航 一.认识贝叶斯网络 1.概念原理介绍 2.举例解析 二.马尔可夫模型 1.概念原理介绍 2.举例解析 三.隐马尔可夫模型 1.概念原理介绍 2.举例解析 四.隐马尔可夫模型简单实现 五.完整代码 六.结语 隐马尔可夫模型HMM学习导航 NLP学习记录,这一章从概率图模型开始,学习常见的图模型具体的原理以及实现算法,包括了有向图模型:贝叶斯网络(BN).(隐)马尔可夫模型(MM/HMM),无向图模型:马尔可夫网络(MN).条件随机场(CRF).学习前提条件需要一…
目录 前言 预备知识 一.估计问题 1.问题推导 2.前向算法/后向算法 二.序列问题 1.问题推导 2.维特比算法 三.参数估计问题 1.问题推导 2.期望最大化算法(前向后向算法) 总结 前言 HMM隐马尔可夫模型,这个名字看起来熟悉,其实很是陌生.它给人一种很神秘高深的感觉,确实,很强大的一个模型,在概率论统计学应该是应用广泛而且很重要的:虽说很高深强大的一个模型,其原理确实我们最基础的理论知识不断推导计算来的. 上一篇<HMM隐马尔可夫模型来龙去脉(一)>,从HMM基础理论开始,我们可…
HMM定义 1)隐马尔科夫模型 (HMM, Hidden Markov Model) 可用标注问题,在语音识别. NLP .生物信息.模式识别等领域被实践证明是有效的算法. 2)HMM 是关于时序的概率模型,描述由一个隐藏的马尔科夫链生成不可观测的状态随机序列,再由各个状态生成观测随机序列的过程. 3)隐马尔科夫模型随机生成的状态随机序列,称为状态序列:每个状态生成一个观测,由此产生的观测随机序列,称为观测序列.序列的每个位置可看做是一个时刻. 隐马尔科夫模型的贝叶斯网络 由于Z1,Z2,...…
这是一个非常重要的模型,凡是学统计学.机器学习.数据挖掘的人都应该彻底搞懂. python包: hmmlearn 0.2.0 https://github.com/hmmlearn/hmmlearn 参考链接: 一文搞懂HMM(隐马尔可夫模型) 如何用简单易懂的例子解释隐马尔可夫模型? - 知乎 有些文章里面已经介绍得非常清楚了,只是需要在项目中进行实践,然后做一下总结. 数学之美里有一章专门讲了隐含马尔科夫模型,讲得非常的通俗易懂. 在自然语言处理方面得到了广泛的应用,此外还有语音识别,机器翻…
1. HMM背景 0x1:概率模型 - 用概率分布的方式抽象事物的规律 机器学习最重要的任务,是根据一些已观察到的证据(例如训练样本)来对感兴趣的未知变量(例如类别标记)进行估计和推测. 概率模型(probabilistic model)提供了一种描述框架,将学习任务归结于计算未知变量的概率分布,而不是直接得到一个确定性的结果. 在概率模型中,利用已知变量推测未知变量的分布称为“推断(inference)”,其核心是如何基于可观测变量推测出未知变量的条件分布. 具体来说,假定所关心的变量集合为…
隐马尔科夫模型HMM 序言 文本序列标注是自然语言处理中非常重要的一环,我先接触到的是CRF(条件随机场模型)用于解决相关问题,因此希望能够对CRF有一个全面的理解,但是由于在学习过程中发现一个算法像jar包依赖一样依赖于各种算法,就像提到CRF模型,那么肯定不得不提一下HMM等模型,如果不能很好的理解这些算法,那么其实也不算完全搞明白!因此我会在算法的介绍中对涉及到的算法知识尽我所能尽量详细和朴实的说明. 网上也有很多算法说明,但是感觉对一些向我一样刚入门的小白用户很不友好,大堆的数据公式,甚…