超人学院Hadoop大数据技术资源分享 http://bbs.superwu.cn/forum.php?mod=viewthread&tid=807&fromuid=645 很多其它精彩内容请关注:http://bbs.superwu.cn 关注超人学院微信二维码:…
超人学院Hadoop大数据资源分享 http://bbs.superwu.cn/forum.php?mod=viewthread&tid=770&extra=page%3D1 很多其它精彩内容请关注:http://bbs.superwu.cn 关注超人学院微信二维码: 关注超人学院java免费学习交流群:…
超人学院Hadoop大数据资源共享-----数据结构与算法(java解密版) http://yunpan.cn/cw5avckz8fByJ   訪问password b0f8 很多其它精彩内容请关注:http://bbs.superwu.cn 关注超人学院微信二维码:   关注超人学院java免费学习交流群:  版权声明:本文博主原创文章,博客,未经同意不得转载.…
除Hadoop外的9个大数据技术: 1.Apache Flink 2.Apache Samza 3.Google Cloud Data Flow 4.StreamSets 5.Tensor Flow 6.Apache NiFi 7.Druid 8.LinkedIn WhereHows 9.Microsoft Cognitive Services Hadoop是大数据领域最流行的技术,但并非唯一.还有很多其他技术可用于解决大数据问题.除了Apache Hadoop外,另外9个大数据技术也是必须要了…
大数据的时代已经来了,信息的爆炸式增长使得越来越多的行业面临这大量数据需要存储和分析的挑战.Hadoop作为一个开源的分布式并行处理平台,以其高拓展.高效率.高可靠等优点越来越受到欢迎.这同时也带动了hadoop商业版的发行.这里就通过大快DKhadoop为大家详细介绍一下hadoop大数据平台架构内容. 目前国内的商业发行版hadoop除了大快DKhadoop以外还有像华为云等.虽然发行方不同,但在平台架构上相似,这里就以我比较熟悉的dkhadoop来介绍. 1.大快Dkhadoop,可以说是…
基于CentOS7系统 新建用户 1.使用"su-"命令切换到root用户,然后执行命令: adduser zonkidd 2.执行以下命令,设置用户zonkidd的密码: passwd zonkidd 修改用户权限 1. 切换到root用户,然后修改sudoers: vi /etc/sudoers 2.在文本root ALL = (ALL)ALL的下方加入代码,使hadoop用户可以使用sudo命令: hadoop ALL=(ALL) 3.执行sudo命令默认五分钟后密码过期,下次使…
[摘要] 知乎上一篇很不错的科普文章,介绍大数据技术生态圈(Hadoop.Hive.Spark )的关系. 链接地址:https://www.zhihu.com/question/27974418 [问题] 如何用形象的比喻描述大数据的技术生态?Hadoop.Hive.Spark 之间是什么关系? [答案1] 学习很重要的是能将纷繁复杂的信息进行归类和抽象. 对应到大数据技术体系,虽然各种技术百花齐放,层出不穷,但大数据技术本质上无非解决4个核心问题. 1.存储,海量的数据怎样有效的存储?主要包…
本篇文章内容来自2016年TOP100summitWalmartLabs实验室广告平台首席工程师.架构师粟迪夫的案例分享. 编辑:Cynthia 粟迪夫:WalmartLabs实验室广告平台首席工程师.架构师 在大数据平台架构设计.消息中间件.分布式系统等领域有丰富经验. 作为技术负责人,帮助多家企业搭建了大数据平台和分布式系统. 目前主导WMX大数据平台.广告效益分析系统和实时数据管道的开发. 导读:作为世界上最大的商品零售商,沃尔玛每天都投放大量的广告.产生大量的商品交易,生成大量数据,需要…
1. Hadoop 的神话正在破灭 IBM leads BigInsights for Hadoop out behind barn. Shots heard IBM has announced the retirement of the basic plan for its data analytics software platform, BigInsights for Hadoop. The basic plan of the service will be retired in a mo…
  第1章 大数据概论 1.1 大数据概念 大数据概念如图2-1 所示. 图2-1 大数据概念 1.2 大数据特点(4V) 大数据特点如图2-2,2-3,2-4,2-5所示 图2-2 大数据特点之大量 图2-3 大数据特点之高速 图2-4 大数据特点之多样 图2-5 大数据特点之低价值密度 1.3 大数据应用场景 大数据应用场景如图2-6,2-7,2-8,2-9,2-10,2-11所示 图2-6 大数据应用场景之物流仓储 图2-7 大数据应用场景之零售 图2-8 大数据应用场景之旅游 图2-9…