A-卷积网络压缩方法总结】的更多相关文章

卷积网络的压缩方法 一,低秩近似 二,剪枝与稀疏约束 三,参数量化 四,二值化网络 五,知识蒸馏 六,浅层网络 我们知道,在一定程度上,网络越深,参数越多,模型越复杂,其最终效果越好.神经网络的压缩算法是,旨在将一个庞大而复杂的预训练模型(pre-trained model)转化为一个精简的小模型. 按照压缩过程对网络结构的破坏程度,我们将模型压缩技术分为"前端压缩"和"后端压缩"两部分. 前端压缩,是指在不改变原网络结构的压缩技术,主要包括知识蒸馏.轻量级网络(紧…
基于孪生卷积网络(Siamese CNN)和短时约束度量联合学习的tracklet association方法 Siamese CNN Temporally Constrained Metrics Tracklet Association MTT MOT 读 'B. Wang, L. Wang, et.al. Joint Learning of Siamese CNNs and Temporally Constrained Metrics for Tracklet Association[j],…
加州大学洛杉矶分校在PLOS Computing Biology上发表了一篇文章,分析了深度卷积网络(DCNN)和人类识别物体方法的不同:深度卷积网络(DCNN)是依靠物体的纹理进行识别,而人类是依靠物体的轮廓进行识别.如对下面的图a,人类依靠轮廓很快就能识别出这是一只熊,速度和准确性超过深度卷积网络(DCNN):但是如果把熊的图片分成若干部分,再打乱,如图b所示,人类要识别出这是一只熊就很困难了,而深度卷积网络(DCNN)可以很容易的识别出来.这是因为人类是依靠物体的全局信息和轮廓去识别一个物…
一.基于TensorFlow的softmax回归模型解决手写字母识别问题 详细步骤如下: 1.加载MNIST数据: input_data.read_data_sets('MNIST_data',one_hot=true) 2.运行TensorFlow的InterractiveSession: sess = tf.InteractiveSession() 3.构建Softmax回归模型: 占位符tf.placeholder 变量tf.Variable 类别预测与损失函数 tf.nn.softmax…
人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档前链数目.文档锚文本信息,为找特征隐藏信息,隐藏层神经元数目设置少于输入特征数目,经大量样本训练能还原原始特征模型,相当用少于输入特征数目信息还原全部特征,压缩,可发现某些特征之间存在隐含相关性,或者有某种特殊关系.让隐藏层神经元数目多余输入特征数目,训练模型可展示特征之间某种细节关联.输出输入一致…
概述 对于计算机视觉的应用现在是非常广泛的,但是它背后的原理其实非常简单,就是将每一个像素的值pixel输入到一个DNN中,然后让这个神经网络去学习这个模型,最后去应用这个模型就可以了.听起来是不是很简单,其实如果大家深入研究的话,这里面还是有很多内容去学习的,例如:咱们的图片大小可能不一样,同一张图片不同的旋转角度可到的结果可能不一样,如何给咱们的本地图片来label(实际中并不是所有的数据都想mnist那样,谷歌都给咱们label好了,拿来用就行),等等这些问题咱们在实际中肯定都是要用到的.…
有些东西总是姗姗来迟,就好比这新年的钟声,我们盼望着新年同时也不太旧的一年过去.每当这个时候,我们都会总结一下在过去的一年中我们收获了什么,再计划新的一年我们要实现什么.PF并不是一个十分优秀的框架,可以说这只是出于作者们对自己技术的总结.本次版本比我计划的要晚,一方面是因为新年的原因,另一方面又是工作的原因,诚然这些都只不过是为推卸责任的借口,而这责任却是对自己的.再多的话语,只能留待来年,本次更新比较匆忙,希望有用到的朋友可以反馈BUG到issue上,让我能及时跟进.同时祝大家在新的一年:幸…
主讲人 网神 (新浪微博:@豆角茄子麻酱凉面) 网神(66707180) 18:55:06 那我们开始了啊,前面第3,4章讲了回归和分类问题,他们应用的主要限制是维度灾难问题.今天的第5章神经网络的内容:1. 神经网络的定义2. 训练方法:error函数,梯度下降,后向传导3. 正则化:几种主要方法,重点讲卷积网络 书上提到的这些内容今天先不讲了,以后有时间再讲:BP在Jacobian和Hessian矩阵中求导的应用:混合密度网络:贝叶斯解释神经网络. 首先是神经网络的定义,先看一个最简单的神经…
背景 CNN能够对图片进行分类,可是怎么样才能识别图片中特定部分的物体,在2015年之前还是一个世界难题.神经网络大神Jonathan Long发表了<Fully Convolutional Networks for Semantic Segmentation>在图像语义分割挖了一个坑,于是无穷无尽的人往坑里面跳. 全卷积网络 Fully Convolutional Networks CNN 与 FCN 通常CNN网络在卷积层之后会接上若干个全连接层, 将卷积层产生的特征图(feature m…
[爬虫进阶]使用Jsoup取代你的一切网络请求方法(java,post,get,代理IP) 原文链接:https://www.cnblogs.com/blog5277/p/9334560.html 原文作者:博客园--曲高终和寡 *******************如果你看到这一行,说明爬虫在本人还没有发布完成的时候就抓走了我的文章,导致内容不完整,请去上述的原文链接查看原文**************** 爬虫最近似乎越来越火了,随着各个培训班开启了各种课程,似乎用用Python里的XX框架…