RCNN: RCNN(Regions with CNN features)是将CNN方法应用到目标检测问题上的一个里程碑,由年轻有为的RBG大神提出,借助CNN良好的特征提取和分类性能,通过RegionProposal方法实现目标检测问题的转化. 算法可以分为四步: 1)候选区域选择 Region Proposal是一类传统的区域提取方法,可以看作不同宽高的滑动窗口,通过窗口滑动获得潜在的目标图像,关于Proposal大家可以看下SelectiveSearch,一般Candidate选项为2k个…
Paper: https://arxiv.org/pdf/1512.02325.pdf SSD用神经网络(VGG)提取多层feature map ,来实现对不同大小物体的检测.如下图所示: We use the VGG-16 network as a base, but other networks should also produce good results. Train: 损失函数=位置误差(locatization loss, loc)+alpha*置信度误差(confidence l…
This results in a significant improvement in speed for high-accuracy detection(59 FPS with mAP 74.3% on VOC2007 test, vs Faster-rcnn 7 FPS with mAP 73.2% or YOLO 45 FPS with mAP 63.4%) 图1 SSD和其它算法的性能比较 一.SSD网络总体架构 图2 SSD网络架构(精简版) 图3 SSD网络架构(细节版) SSD算…
https://blog.csdn.net/WZZ18191171661/article/details/79444217 论文题目:SSD: Single Shot MultiBox Detector 论文链接:论文链接 论文代码:Caffe代码点击此处 This results in a significant improvement in speed for high-accuracy detection(59 FPS with mAP 74.3% on VOC2007 test, vs…
SSD: Single Shot MultiBox Detector——目标检测 参考https://blog.csdn.net/u010167269/article/details/52563573 目标检测算法可分为两种类型:one-stage和two-stage,两者的区别在于前者是直接基于网络提取到的特征和预定义的框(anchor)进行目标预测:后者是先通过网络提取到的特征和预定义的框学习得到候选框(region of interest,RoI),然后基于候选框的特征进行目标检测 one…
论文链接: https://arxiv.org/pdf/1512.02325.pdf 代码下载: https://github.com/weiliu89/caffe/tree/ssd Abstract We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of boun…