P1097 方程的整数解】的更多相关文章

题目描述 给定一个整数N,求方程 \(x^3-x^2-x=N\) 的整数解. 保证解的范围在 \([-100,100]\) 范围内. 输入格式 一行一个整数 \(N(-10^6<=N<=10^6)\) . 输出格式 一行,所有整数解,按从小到大的顺序输出.每个数字都以一个空格隔开,注意,行末没有多余的空格. 样例输入 0 样例输出 0…
在概率论问题中求解基本事件.某个事件的可能情况数要涉及到组合分析. 而这一部分主要涉及到简单的计数原理和二项式定理.多项式定理. 我们从一个简单的实例入手. 方程的整数解个数: Tom喜欢钓鱼,一直他在r天中钓了n条鱼,设xi表示Tom第i天钓鱼的数目,这里我们,很显然时间是有序排列的,因此我们得到一个r元向量<x1,x2,x3……,xr>,那么满足上述条件,即x1+x2+x3+……+xr=n的r元组合.有多少个呢? 分析:首先我们刻意的将问题限制一下,假设每天Tom都不是空手而归,那么通过插…
方程整数解 方程: a^2 + b^2 + c^2 = 1000(或参见[图1.jpg])这个方程有整数解吗?有:a,b,c=6,8,30 就是一组解.你能算出另一组合适的解吗? 请填写该解中最小的数字. 注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字.…
http://poj.org/problem?id=1186 (题目链接) 题意 已知一个n元高次方程:   其中:x1, x2,…,xn是未知数,k1,k2,…,kn是系数,p1,p2,…pn是指数.且方程中的所有数均为整数. 假设未知数1 <= xi <= M, i=1,,,n,求这个方程的整数解的个数. Solution meet in the middle.移项,分两部分搜索,hash判断两次dfs的结果是否相同,统计结果. 代码 // poj1186 #include<algo…
方程的解数 Time Limit: 15000MS   Memory Limit: 128000K Total Submissions: 6188   Accepted: 2127 Case Time Limit: 5000MS Description 已知一个n元高次方程:  其中:x1, x2,...,xn是未知数,k1,k2,...,kn是系数,p1,p2,...pn是指数.且方程中的所有数均为整数. 假设未知数1 <= xi <= M, i=1,,,n,求这个方程的整数解的个数. 1…
整数解 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 33425    Accepted Submission(s): 11730 Problem Description 有二个整数,它们加起来等于某个整数,乘起来又等于另一个整数,它们到底是真还是假,也就是这种整数到底存不存在,实在有点吃不准,你能快速回答吗?看来只能通过编程.例如:x…
Description 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) Input 输入文件名为equation .in. 输入共n + 2 行. 第一行包含2 个整数n .m ,每两个整数之间用一个空格隔开. 接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an Output 输出文件名为equation .out . 第一行输出方程在[1, m ] 内的整数解的个数. 接下来每行一个整数,按照从小…
3129: [Sdoi2013]方程 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 582  Solved: 338[Submit][Status][Discuss] Description 给定方程    X1+X2+. +Xn=M我们对第l..N1个变量进行一些限制:Xl < = AX2 < = A2Xn1 < = An1我们对第n1 + 1..n1+n2个变量进行一些限制:Xn1+l > = An1+1Xn1+2 > =…
BZOJ_3129_[Sdoi2013]方程_组合数学+容斥原理 Description 给定方程     X1+X2+. +Xn=M 我们对第l..N1个变量进行一些限制: Xl < = A X2 < = A2 Xn1 < = An1 我们对第n1 + 1..n1+n2个变量进行一些限制: Xn1+l > = An1+1 Xn1+2 > = An1+2 Xnl+n2 > = Anl+n2 求:在满足这些限制的前提下,该方程正整数解的个数. 答案可能很大,请输出对p取模…
http://www.lydsy.com/JudgeOnline/problem.php?id=3129 如果没有Ai的限制,就是隔板法,C(m-1,n-1) >=Ai 的限制:m减去Ai <=Ai 的限制:容斥原理,总数- 至少有一个数>Ai + 至少有两个数>Ai - …… 计算组合数取模,模数虽然很大也不是质数,但是质因数分解后 最大的才 10201,所以用扩展卢卡斯即可 注意在用扩展卢卡斯计算 阶乘的时候,要预处理 不包含当前质因子的阶乘,否则会TLE 3个点 #inclu…
1735 方程的解数 http://codevs.cn/problem/1735/ 2001年NOI全国竞赛  时间限制: 5 s  空间限制: 64000 KB     题目描述 Description 已知一个n元高次方程: k1x1p1+k2x2p2+……+knxnpn = 0 其中:x1, x2, …,xn是未知数,k1,k2,…,kn是系数,p1,p2,…pn是指数.且方程中的所有数均为整数. 假设未知数1≤ xi ≤M, i=1,,,n,求这个方程的整数解的个数. 输入描述 Inpu…
题目 给定方程 X1+X2+. +Xn=M 我们对第l..N1个变量进行一些限制: Xl < = A X2 < = A2 Xn1 < = An1 我们对第n1 + 1..n1+n2个变量进行一些限制: Xn1+l > = An1+1 Xn1+2 > = An1+2 Xnl+n2 > = Anl+n2 求:在满足这些限制的前提下,该方程正整数解的个数. 答案可能很大,请输出对p取模后的答案,也即答案除以p的余数. 输入格式 输入含有多组数据,第一行两个正整数T,p.T表示…
304. [NOI2001] 方程的解数 ★★☆   输入文件:equation1.in   输出文件:equation1.out   简单对比时间限制:3 s   内存限制:64 MB 问题描述 已知一个n元高次方程: k1xp11+k2xp22+⋯+ knxpnn=0 其中:x1, x2, …,xn是未知数,k1,k2,…,kn是系数,p1,p2,…pn是指数.且方程中的所有数均为整数. 假设未知数1≤ xi ≤M, i=1,,,n,求这个方程的整数解的个数. 输入文件 文件的第1行包含一个…
╰( ̄▽ ̄)╭ 给定方程 X1+X 2+-+Xn=m 我们对第 1.. n1 个变量 进行一些限制 : X1≤A1 X2≤A2 - Xn1 ≤An1 我们对第 n1+1.. n1+1.. n1+ n2 个变量 进行一些限制 : X_(n1+1)≥A_(n1+1) X_(n1+2)≥A_(n1+2) - X_(n1+n2) ≥A_(n1+n2) 求:在满足这些限制的前提下, 该方程正整数解的个数. 答案可能很大,请输出对 p取模 后的答案 ,也即 答案除以 p的余数. (⊙ ▽ ⊙) 利用容斥原理…
问题描述 输出格式 输出一行,输出一个整数,表示方程的整数解的个数. 样例输入 - 样例输出 #include <stdio.h> #include <string.h> #include <iostream> #include <string> #include <math.h> #include <algorithm> #include <vector> #include <stack> #include…
我不告诉你这个链接是什么 分析:模拟可以过,但是好烦啊..不会写.还有一个扩展欧几里得的方法,见下: 假设光线没有反射,而是对应的感应器镜面对称了一下的话 左下角红色的地方是原始的的方格,剩下的三个格子是镜面对称的结果.原来的点是的话,剩下三个点从左上到右下分别是,,.真实情况是一个点不止只有这三个镜像点,一个点可以在平面内生成无数个点,可以用坐标表示为为任意非负整数. 假设光线没有经过反射,那么用函数可以表示为,这样要求包括镜像点在内的所有点,于是就有二元一次方程,可以改成四个二元一次方程式,…
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 第一种证明: a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,而r = a - kb,因此d|r 因此d是(b,a mod b)的公约数 假设d 是(b,a mod b)的公约数,则 d | b , d |r ,但是a…
题目链接: 传送门 青蛙的约会 Time Limit: 1000MS     Memory Limit: 65536K Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永…
原博网址:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 第一种证明: a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,而r = a -…
设跳的次数为t 根据题意可得以下公式:(x+mt)%L=(y+nt)%L 变形得 (x+mt)-(y+nt)=kL (n-m)t+kL=x-y 令a=(n-m),b=L,c=x-y 得 at+bk=c 此时就相当于求解二元不定方程ax+by=c的最小整数解 1.先计算Gcd(a,b),若n不能被Gcd(a,b)整除,则方程无整数解:否则,在方程两边同时除以Gcd(a,b),得到新的不定方程a' * x + b' * y = c',此时Gcd(a',b')=1; 2.利用欧几里德算法求出方程a'…
题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+by=c 设tm=gcd(a,b) 若c%tm!=0,则该方程无整数解. 否则,列出方程: a*x0+b*y0=tm 易用extend_gcd求出x0和y0 然后最终的解就是x=x0*(c/tm),y=y0*(c/tm) 注意:若是要求最小非负整数解? 例如求y的最小非负整数解, 令r=a/tm,则…
这个题解得改一下,开始接触数论,这道题目一开始是看了别人的思路做的,后来我又继续以这种方法去做题,发现很困难,学长告诉我先看书,把各种词的定义看懂了,再好好学习,我做了几道朴素的欧几里德,尽管是小学生一样的题目我还是坚持做了几道,然后 看了中国余数定理 跟 中国剩余定理 还有扩展欧几里德的定义以及介绍,这次 这个题目是我自己思考出来的,这个题解是写给自己看的  同时向大家共享,学长说 做数论 要不时的回头 看看以前的题目 做做过了的题目,所以留个纪念 这道题目关节解决句是: 可以这样思考: 对于…
[题目描述] 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y). 说明:这里的拼就是使得你选出的向量之和为(x,y) [输入格式] 第一行数组组数t,(t<=50000) 接下来t行每行四个整数a,b,x,y (-2*10^9<=a,b,x,y<=2*10^9) [输出格式] t行每行为Y或者为N,分别表示可以拼出来,不能拼出来 [分析]…
这个困扰了自己好久,终于找到了解释,还有自己改动了一点点,耐心看完一定能加深理解   扩展欧几里德算法-求解不定方程,线性同余方程. 设过s步后两青蛙相遇,则必满足以下等式: (x+m*s)-(y+n*s)=k*l(k=0,1,2....) 稍微变一下形得: (n-m)*s+k*l=x-y 令n-m=a,k=b,x-y=c,即 a*s+b*l=c 只要上式存在整数解,则两青蛙能相遇,否则不能. 首先想到的一个方法是用两次for循环来枚举s,l的值,看是否存在s,l的整数解,若存在则输入最小的s,…
先做出两个函数的图像,然后求|x|+|y|的最小值.|x|+|y|=|x0+b/d *t |+|y0-a/d *t| 这个关于t的函数的最小值应该在t零点附近(在斜率大的那条折线的零点附近,可以观察出来).以下三种情况中,函数最小值都应该出现在B点附近./* 对于不定整数方程xa+yb=c,若 c mod Gcd(a, b)=0,则该方程存在整数解,否则不存在整数解. 上面已经列出找一个整数解的方法,在找到x * a+y * b = Gcd(a, b)的一组解x0,y0后 ,/*x * a+y…
构造方程 (x + m * s) - (y + n * s) = k * l(k = 0, 1, 2,...) 变形为 (n-m) * s + k * l = x - y.即转化为模板题,a * x + b * y = n,是否存在整数解. #include <iostream> using namespace std; #define LL long long LL gcd(LL a, LL b) {     return b ? gcd(b, a%b) : a; } //find x, y…
分析:裴蜀定理,a,b互质的充要条件是存在整数x,y使ax+by=1.存在整数x,y,使得ax+by=c.那么c就是a,b的公约数. 如果存在数a ,由于对随意x方程都成立.则有当x=1时f(x)=18+ka;有由于f(x)能被65整除,所以f(x)=n*65.即18+ka=n*65有整数解则说明如果成立. ax+by = c的方程有整数解的一个充要条件是:c%gcd(a, b) == 0.然后枚举直到(65*n-18)%k == 0. #include<iostream> using nam…
青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 90083   Accepted: 16257 Description 两仅仅青蛙在网上相识了,它们聊得非常开心,于是认为非常有必要见一面.它们非常高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.但是它们出发之前忘记了一件非常重要的事情,既没有问清楚对方的特征,也没有约定见面的详细位置.只是青蛙们都是非常乐观的,它们认为仅仅要一直朝着某个方…
有关数论方面的题要仔细阅读,分析公式. Problem Description Ignatius is poor at math,he falls across a puzzle problem,so he has no choice but to appeal to Eddy. this problem describes that:f(x)=5*x^13+13*x^5+k*a*x,input a nonegative integer k(k<10000),to find the minima…
题记:这是我第四次审查扩展欧几里德原理,由于不经常使用.当你想使用,可以不记得细节,经常检查信息,所以,简单地梳理这一原则和扩展欧几里德的原则,以博客存档以备查用. 一个.欧几里德原理 欧几里德原理(Euclidean Theory)论中求两正整数最大公约数(Greatest Common Divisor, GCD)的方法.欧几里得原理在中国古代又称"辗转相除法",这一称法揭示了其求最大公约数的过程. 对于两个正整数a,b.记其最大公约数为gcd (a,b). 那么我们有 gcd (a…