Heine-Borel定理】的更多相关文章

http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; int jc[100003]; int p; int ipow(int x, int b) { ll t = 1, w = x;…
Mittag-Leffler定理    设$D\subset\mathbb C$为区域,而$\{a_{n}\}$为$D$中互不相同且无极限点的点列,那么对于任意给定的一列自然数$\{k_{n}\}$,定义函数$$\psi_{n}(z)=\sum_{j=1}^{k_{n}}\frac{c_{n,j}}{(z-a_{n})^j},n\in\mathbb N$$ 则必存在$D$上的亚纯函数$f(z)$使得$f$以$\{a_{n}\}$为其极点集,且在每个$a_{n}$附近的Laurent展开式的主要部…
转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合,G为Sn的置换群,C为Sn的着色集.那么我们等于是要求C中有多少种着色方案是不等价的.定义两种着色等价的概念:如果对于在C中的两种着色c1.c2,存在置换f使得f*c1=c2,那么c1和c2就是等价的.要想求不等价着色的个数,我们要先证明一个定理,即:         Burnside定理:设G(c…
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                         (全题文末) 知识点: 整数n有种和分解方法. 费马小定理:p是质数,若p不能整除a,则 a^(p-1) ≡1(mod p).可利用费马小定理降素数幂. 当m为素数,(m必须是素数才能用费马小定理) a=2时.(a=2只是题中条件,a可以为其他值) mod m =  *      //  k=…
转自:http://blog.csdn.net/dongfengkuayue/article/details/6461298 本文转自head for better博客,版权归其所有,代码系本人自己编写 问题描述      人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天.一个周期内有一天为峰值,在这一天, 人在对应的方面(体力,情感或智力)表现最好.通常这三个周期的峰值不会是同一天. 现在给出三个日期,分别对应于体力,情感,智力出现峰值的日期.然后再给出一个起始日期, 要求…
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds memory limit per test 256 megabytes input standard input output standard output Devu wants to decorate his garden with flowers. He has purchased n boxes…
最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 . 要解决这个问题首先需要Lucas定理 或者 C!解法. Lucas定理: 我们令n=sp+q , m=tp+r . q , r ≤ p 那么,然后你只要继续对调用Lucas定理即可. 代码可以递归的去完成这个过程,其中递归终点为t = 0 : 伪代码,时间O(logp(n)*p): int L…
[题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define eps 1e-8 #define ma…
题目描述 在本题中,格点是指横纵坐标皆为整数的点. 为了圈养他的牛,农夫约翰(Farmer John)建造了一个三角形的电网.他从原点(0,0)牵出一根通电的电线,连接格点(n,m)(0<=n<32000,0<m<32000),再连接格点(p,0)(p>0),最后回到原点. 牛可以在不碰到电网的情况下被放到电网内部的每一个格点上(十分瘦的牛).如果一个格点碰到了电网,牛绝对不可以被放到该格点之上(或许Farmer John会有一些收获).那么有多少头牛可以被放到农夫约翰的电网…
A Simple Nim Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 980    Accepted Submission(s): 573 Problem Description Two players take turns picking candies from n heaps,the player who picks the l…