P2568 GCD】的更多相关文章

P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入样例#1: 4 输出样例#1: 4 说明 对于样例\((2,2),(2,4),(3,3),(4,2)\) \(1<=N<=10^7\) 来源:bzoj2818 本题数据为洛谷自造数据,使用CYaRon耗时5分钟完成数据制作. Solution 方法1:莫比乌斯反演,方法和yy的gcd一样 方法2:…
https://www.luogu.org/problemnew/show/P2568#sub 最喜欢题面简洁的题目了. 本题为求两个数的gcd是素数,那么我们将x和y拆一下, 假设p为$gcd(x,y)$,且p是一个素数,$x=a \times p , y = b \times p $. 然而要满足p的条件的话,a和b一定是互质的,满足$0 \le a,b \le \frac{n}{p} $ 这样的话我们可以枚举这个质数p,将小于$\frac{n}{p}$的数,以及与它互质的数加起来. 互质的…
https://www.luogu.org/problemnew/show/P2568 统计n以内gcd为质数的数的个数. 求 \(\sum\limits_p \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n} [gcd(i,j)==p]\) 一开始还以为要莫比乌斯反演. 推了半天不知道怎么求,遂看题解: $\sum\limits_p \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n} [gcd(i,j)==p] =\sum\l…
我们首先发现这样肯定是做不了的,所以我们枚举为\(gcd(x,y)=d\)的\(d\) 然后考虑以下的性质: \(gcd(x,y)=1 \Leftrightarrow gcd(px,py)=p(p为素数)\) 这个很显然吧,因此当我们枚举素数\(d\)时只需要计算\(x,y\in[1,\lfloor\frac{n}{d}\rfloor]\)且\(gcd(x,y)=1\)的有序\(x,y\)对数即可. 我们假定\(x<=y\),那么很容易结合欧拉函数的性质得出此时对答案的贡献为\(2\cdot\s…
题目链接:传送门 题目: 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入样例#: 复制 输出样例#: 复制 说明 对于样例(,),(,),(,),(,) <=N<=^ 来源:bzoj2818 本题数据为洛谷自造数据,使用CYaRon耗时5分钟完成数据制作. 看了好几天数论了,忍不住出来切切水题. 思路: 若已知x,y,因为gcd(x, y)为素数,令p = gc…
题目大意:给你$n(1\leqslant n\leqslant 10^7)$,求$\displaystyle\sum\limits_{x=1}^n\displaystyle\sum\limits_{y=1}^n[(x,y)\in \rm prime]$($(a,b)$为$a,b$的$gcd$) 题解:可以用莫比乌斯反演来做,同这道题,只需要把$m$改成$n$就行了 卡点:无 C++ Code:(莫比乌斯反演) #include <cstdio> #include <cstring>…
\(\color{#0066ff}{ 题目描述 }\) 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. \(\color{#0066ff}{输入格式}\) 一个整数N \(\color{#0066ff}{输出格式}\) 答案 \(\color{#0066ff}{输入样例}\) 4 \(\color{#0066ff}{输出样例}\) 4 \(\color{#0066ff}{数据范围与提示}\) 对于样例(2,2),(2,4),(3,3),(4,2) 1<…
前言 耻辱,我这个OI界的耻辱! 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对.输入格式  一个整数N输出格式答案输入输出样例  输入  4  输出  4说明/提示  对于样例(2,2),(2,4),(3,3),(4,2)  1<=N<=10^7 分析 刚学(抄)完莫比乌斯反演做完P2522和P3455的我刚看到这个题第一反应竟然是 这不是个莫比乌斯反演的板子题吗 <----zz言论 看我切了他  <----zz行为 瞄了一…
题意:$\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i,j)\epsilon prime]$. 对于这类题一般就是枚举gcd,可得: =$\sum_{d\epsilon prime}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i,j)==d]$ =$\sum_{d\epsilon prime}\sum_{i=1}^{{\lfloor \frac{n}{d}\rfloor}}\mu(i){\lfloor \frac{n}{id}\rfloor}{\lfl…
看到这是一道紫题还是和gcd有关的才点进来(毕竟数论只会gcd). 前置芝士 质数**(又称素数):因数只有1和本身,但是很特殊的1不是一个质数. gcd**:欧几里得算法,又称辗转相除法,可以在约为O(LogN)的时间复杂度内求出两个数的最大公约数(N为两个数中大的那个数,在两数为相邻的斐波那契数时最慢,具体不证明其实就是我不会). 欧拉函数**:一个非常基本的数论函数,是一个积性函数(虽然本题并没有考到),欧拉函数可以表示为\(\varphi(x)\),表示小于x的自然数中与x互质的数的个数…