题意:初始1个红气球,每小时后,1个红气球会变成3个红气球和1个蓝气球,而1个蓝气球会变成4个蓝气球.问经过N小时后,第L~R行一共有多少个红气球. 解法:问行数就定义f[i][j]表示 i 小时后前 j 行的红气球数.分情况讨论后就可得出递推方程. 注意--1.数组开不小就时间换空间,递归替代递推求解:2.要另外定义一个c函数,c(i)表示f[i][1<<i],否则每次都至少要算2^i,会TLE. 1 #include<cstdio> 2 #include<cstdlib&…
这道题大体意思是利用一种递归规则生成不同的气球,问在某两行之间有多少个红气球. 我拿到这个题,一开始想的是递归求解,但在如何递归求解的思路上我的方法是错误的.在研读了例题上给出的提示后豁然开朗(顺便吐槽一下算法竞赛第二版在这这道题目上(P246)提示写的有问题,g(k,i)=2g(k-1,i-2^(k-1))+c(k-1)  ,他把c(k-1)写成了c(k)...我纠结这个纠结了好久) 根据题目提示,这道题可以用f(k,i)表示k小时后最上边i行的红气球总数 那么我们的答案就可以表示为f(k,b…
因为不好复制题目,就出给出链接吧: Vjudge传送门[here] UVa传送门[here] 请仔细看原题上的那幅图,你会发现,在时间t(t > 0),当前的气球构成的一幅图,它是由三个时间为(t - 1)的图再加上一块全是蓝色的一块构成.所以可以想到递归求解.对于上半部分的行求前一时刻对应几行的红球数乘2,下面的减去2t - 1然后递归前一幅图求解. 但是这样最坏的时间复杂度为O(2k-1),仍然会TLE,那么得另寻出路.如果求在时刻t整个一幅图的红球个数,那么可以直接算出来,个数为3k. 因…
一个红球能够分裂为3个红球和一个蓝球. 一个蓝球能够分裂为4个蓝球. 分裂过程下图所看到的: 设当前状态为k1.下一状态为k2. k1的第x行红球个数 * 2 ⇒ k2第2*x行的红球个数. k1的第x行红球个数 ⇒ k2第2*x+1行的红球个数. 特殊处理一下上下边界.递归求解就能够搞定了. #include <stdio.h> #include <string.h> #include <math.h> #include <stdlib.h> #inclu…
紫书例题p245 Piotr found a magical box in heaven. Its magic power is that if you place any red balloon inside it then, after one hour, it will multiply to form 3 red and 1 blue colored balloons. Then in the next hour, each of the red balloons will multip…
递归的边界条件写的多了--不是必需写呢么多的.. 不明确可共同探讨~ #include<cstdio> #include<iostream> #include<cmath> using namespace std; long long dp(int kk,int pos) { int n=kk;int temp=(int)pow(2,n); // printf("%d %d\n",kk,pos); if(kk==0&&pos==1)…
题意:问k小时后,第A~B行一共有多少个红气球. 分析:观察图可发现,k小时后,图中最下面cur行的红气球个数满足下式: (1)当cur <= POW[k - 1]时, dfs(k, cur) = dfs(k - 1, cur); (2)当cur > POW[k - 1]时, dfs(k - 1, cur) = 2 * dfs(k - 1, cur - POW[k - 1]) + tot[k - 1]; 其中,POW[k - 1]为2^(k  - 1),tot[k - 1]为k-1小时后图中的…
题目:UVA - 590Always on the run(递推) 题目大意:有一个小偷如今在计划着逃跑的路线,可是又想省机票费. 他刚開始在城市1,必须K天都在这N个城市里跑来跑去.最后一天达到城市N.问如何计划路线的得到最少的费用. 解题思路:一開始题目意思就理解有些问题. dp[k][i]:代表在第k天小偷从某一个城市(除了i)坐飞机飞到城市i(到达城市i也是在这一天). 第k天的话,就看这一天坐哪个航班,加上之前的费用是最小的,就选这个方法. 然后k+ 1天就又是由第k天推出来的. 状态…
算法提高 递推求值 时间限制:1.0s 内存限制:256.0MB 问题描述 已知递推公式: F(n, 1)=F(n-1, 2) + 2F(n-3, 1) + 5, F(n, 2)=F(n-1, 1) + 3F(n-3, 1) + 2F(n-3, 2) + 3. 初始值为:F(1, 1)=2, F(1, 2)=3, F(2, 1)=1, F(2, 2)=4, F(3, 1)=6, F(3, 2)=5. 输入n,输出F(n, 1)和F(n, 2),由于答案可能很大,你只需要输出答案除以9999999…
不难发现,每过一个小时,除了右下方的气球全都是蓝色以外,其他都和上一个小时的气球是一样的,所以是可以递推的.然后定义一类似个前缀和的东西f(k,i)表示k小时之后上面i行的红气球数.预处理出k小时的红气球总数c(k),递归时候注意终止条件. #include<bits/stdc++.h> using namespace std; typedef long long ll; ; ll c[maxn]; ll f(int k,int i) { ; <<k)) return c[k];…