TCP三次握手(通俗易懂)】的更多相关文章

  概述 我们都知道 TCP 是 可靠的数据传输协议,UDP是不可靠传输,那么TCP它是怎么保证可靠传输的呢?那我们就不得不提 TCP 的三次握手和四次挥手. 三次握手 下图为三次握手的流程图 下面通过我们 wireshark 抓包工具来分析三次握手 三次握手数据包 第一次握手 建立连接.客户端发送连接请求报文段,将SYN位置为1,Sequence Number为x:(x 是随机生成的一个 int 数值)然后,客户端进入SYN_SEND状态,等待服务器的确认: 第二次握手 服务器收到SYN报文段…
一--导读 前不久中国和外国RPEC协议的签订,标志着东亚自贸区的建立成功.现在韩国和日本要做贸易.日本一直监听着韩国总统的一举一动,但他又不会主动.(服务器的监听状态)只是被动的等着韩国总统先开口.首先韩国总统发送信息给日本.信息内容为"安倍兄,我想和你做点小生意,我发500台三星手机给你".安倍收到之后回复:"我是安倍,小文啊,收到你的消息了,我要500+1台三星,并且我以50辆汽车作为对等交换".韩国总统收到安倍会话,并回复:"安倍兄,你的消息我已收…
.引言 网络编程中TCP协议的三次握手和四次挥手的问题,在面试中是最为常见的知识点之一.很多读者都知道“三次”和“四次”,但是如果问深入一点,他们往往都无法作出准确回答. 本篇文章尝试使用动画图片的方式,来对这个知识点进行“脑残式”讲解(哈哈),期望读者们可以更加简单.直观地理解TCP网络通信交互的本质. 另外,社区里的另两篇文章<理论经典:TCP协议的3次握手与4次挥手过程详解>.<理论联系实际:Wireshark抓包分析TCP 3次握手.4次挥手过程>也是不错的入门文章,有兴趣…
脑残式网络编程入门(一):跟着动画来学TCP三次握手和四次挥手   http://www.52im.net/thread-1729-1-1.html     1.引言 网络编程中TCP协议的三次握手和四次挥手的问题,在面试中是最为常见的知识点之一.很多读者都知道“三次”和“四次”,但是如果问深入一点,他们往往都无法作出准确回答. 本篇文章尝试使用动画图片的方式,来对这个知识点进行“脑残式”讲解(哈哈),期望读者们可以更加简单.直观地理解TCP网络通信交互的本质. 另外,社区里的另两篇文章<理论经…
一. TCP/IP协议族 TCP/IP是一个协议族,通常分不同层次进行开发,每个层次负责不同的通信功能.包含以下四个层次: 1. 链路层,也称作数据链路层或者网络接口层,通常包括操作系统中的设备驱动程序和计算机中对应的网络接口卡.它们一起处理与电缆(或其他任何传输媒介)的物理接口细节. 2. 网络层,也称作互联网层,处理分组在网络中的活动,例如分组的选路.网络层协议包括IP协议(网际协议).ICMP协议(Internet互联网控制报文协议),以及IGMP协议(Internet组管理协议). 3.…
wireshark是非常流行的网络封包分析软件,功能十分强大.可以截取各种网络封包,显示网络封包的详细信息.使用wireshark的人必须了解网络协议,否则就看不懂wireshark了.为了安全考虑,wireshark只能查看封包,而不能修改封包的内容,或者发送封包. wireshark能获取HTTP,也能获取HTTPS,但是不能解密HTTPS,所以wireshark看不懂HTTPS中的内容,总结,如果是处理HTTP,HTTPS 还是用Fiddler, 其他协议比如TCP,UDP 就用wires…
看到一篇总结很好的TCP三次握手,学习一下,原文链接. 建立TCP需要三次握手才能建立,而断开连接则需要四次握手.整个过程如下图所示: 先来看看如何建立连接的. 首先Client端发送连接请求报文,Server段接受连接后回复ACK报文,并为这次连接分配资源.Client端接收到ACK报文后也向Server段发生ACK报文,并分配资源,这样TCP连接就建立了. 那如何断开连接呢?简单的过程如下: [注意]中断连接端可以是Client端,也可以是Server端. 假设Client端发起中断连接请求…
OSI 计算机网络7层模型 TCP/IP四层网络模型 传输层提供应用间的逻辑通信(端到端),网络层提供的是主机到主机的通信,传输层提供的是可靠服务. TCP 中常说的握手指的是:连接的定义和连接的建立的过程.IP 协议是无连接的,但是 TCP 是有链接的. 端口:数据链路层依靠 mac 地址寻址,网络接口层依靠 ip 地址寻址,传输层依靠端口号寻址,端口就是应用层的各种协议进程和传输实体之间进行层间交换的地址. 端口号:标识不同进程的号码,16位,2的16次方个,只在本地有意义.一共有三类,一是…
wireshark介绍 wireshark的官方下载网站: http://www.wireshark.org/ wireshark是非常流行的网络封包分析软件,功能十分强大.可以截取各种网络封包,显示网络封包的详细信息. wireshark是开源软件,可以放心使用. 可以运行在Windows和Mac OS上. 使用wireshark的人必须了解网络协议,否则就看不懂wireshark了. Wireshark不能做的 为了安全考虑,wireshark只能查看封包,而不能修改封包的内容,或者发送封包…
一.TCP三次握手和四次挥手,ACK报文的大小 首先连接需要三次握手,释放连接需要四次挥手 然后看一下连接的具体请求: [注意]中断连接端可以是Client端,也可以是Server端. [注意] 在TIME_WAIT状态中,如果TCP client端最后一次发送的ACK丢失了,它将重新发送.TIME_WAIT状态中所需要的时间是依赖于实现方法的.典型的值为30秒.1分钟和2分钟.等待之后连接正式关闭,并且所有的资源(包括端口号)都被释放. [问题1]为什么连接的时候是三次握手,关闭的时候却是四次…
在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接. 第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认: 第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态: 第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABL…
1.tcpdump 简介 tcpdump是一个对网络上的数据包进行截获的包分析工具,一般linux系统以命令的形式使用 2.tcp三次握手 建立一个tcp连接会发生下面三个过程: 1.服务器必须准备好接受外来的连接,一般是调用socket,bind,listen三个函数完成 2.客户端通过connect主动连接.客户端tcp发送一个SYN,告诉服务器将在连接中发送数据的序列号 3.服务器必须确认(ACK)客户端的SYN,同时发送自己的SYN 4.客户端必须确认服务器的SYN 总共会进行三次数据交…
TCP包结构 一个TCP包结构如下: 一个TCP包主要由TCP包头和数据部分组成,包头固定部分为20字节,选项和数据部分根据实际情况设置为4N(N可以为0)字节. 1.16bit源端口和目的端口号,它可以确认数据的传输方向(暂不考虑更底层的包) 2.32bit序号,它是为TCP包中数据部分进行编号的部分.假设要发送的数据有100M,由于受MSS( Maximum Segment Size 最大报文段长度)限制,一个TCP包是不可能传输完这100M的数据,于是需要将数据拆分,为了确保拆分传输后的数…
TCP/IP协议不是TCP和IP这两个协议的合称,而是指因特网整个TCP/IP协议族. 从协议分层模型方面来讲,TCP/IP由四个层次组成:网络接口层.网络层.传输层.应用层. TCP协议:即传输控制协议,它提供的是一种可靠的数据流服务.当传送受差错干扰的数据,或举出网络故障,或网络负荷太重而使网际基本传输系统不能正常工作时,就需要通过其他的协议来保证通信的可靠.TCP就是这样的协议.TCP采用“带重传的肯定确认”技术来实现传输的可靠性.并使用“滑动窗口”的流量控制机制来高网络的吞吐量.TCP通…
转载 http://www.cnblogs.com/zmlctt/p/3690998.html 相对于SOCKET开发者,TCP创建过程和链接折除过程是由TCP/IP协议栈自动创建的.因此开发者并不需要控制这个过程.但是对于理解TCP底层运作机制,相当有帮助. 而且对于有网络协议工程师之类笔试,几乎是必考的内容.企业对这个问题热情之高,出乎我的意料:-).有时上午面试前强调这个问题,并重复讲一次,下午几乎每一个人都被问到这个问题. 因此在这里详细解释一下这两个过程. TCP三次握手 所谓三次握手…
TCP三次握手及四次挥手详细图解 Andrew Huangbluedrum@163.com    相对于SOCKET开发者,TCP创建过程和链接折除过程是由TCP/IP协议栈自动创建的.因此开发者并不需要控制这个过程.但是对于理解TCP底层运作机制,相当有帮助.      而且对于有网络协议工程师之类笔试,几乎是必考的内容.企业对这个问题热情之高,出乎我的意料:-).有时上午面试前强调这个问题,并重复讲一次,下午几乎每一个人都被问到这个问题.   因此在这里详细解释一下这两个过程.   TCP三…
关于TCP三次握手和四次挥手大家都在<计算机网络>课程里学过,还记得当时高超老师耐心地讲解.大学里我遇到的最好的老师大概就是这位了,虽然他只给我讲过<java程序设计>和<计算机网络>,但每次课几乎都动手敲代码或者当场做实验.好了不扯了,下面进入正题. 关于三次握手和四次挥手的理论部分可以在很多资料上找到,我今天动手抓了几个包验证书上的理论,毕竟那些字段和整个通信的过程学起来很枯燥. 一.三次握手:       我用wireshark抓取的数据包如下: 观察其中红色方框…
1.TCP是什么 关于OSI的七层模型 TCP在第四层——Transport层,第四层的数据叫Segment->报文 IP在第三层——Network层,在第三层上的数据叫Packet->数据包 ARP在第二层——Data Link层:在第二层上的数据,我们把它叫Frame->帧 数据从应用层发下来,会在每一层都会加上头部信息,进行封装,然后再发送到数据接收端,就是每个数据都会经过数据的封装和解封装的过程. wireshark抓到的包与对应的协议层如下图所示 Frame 36441: 物理…
转http://www.seanyxie.com/category/linux/ 作者:seanyxie |   一. TCP/IP协议族 TCP/IP是一个协议族,通常分不同层次进行开发,每个层次负责不同的通信功能.包含以下四个层次: 1. 链路层,也称作数据链路层或者网络接口层,通常包括操作系统中的设备驱动程序和计算机中对应的网络接口卡.它们一起处理与电缆(或其他任何传输媒介)的物理接口细节. 2. 网络层,也称作互联网层,处理分组在网络中的活动,例如分组的选路.网络层协议包括IP协议(网际…
一.TCP报文格式        TCP/IP协议的详细信息参看<TCP/IP协议详解>三卷本.下面是TCP报文格式图: 图1 TCP报文格式 上图中有几个字段需要重点介绍下:        (1)序号:Seq序号,占32位,用来标识从TCP源端向目的端发送的字节流,发起方发送数据时对此进行标记.        (2)确认序号:Ack序号,占32位,只有ACK标志位为1时,确认序号字段才有效,Ack=Seq+1.        (3)标志位:共6个,即URG.ACK.PSH.RST.SYN.F…
重要性:必考 一.TCP与UDP的优缺点 ①TCP---传输控制协议,提供的是面向连接.可靠的字节流服务.当客户和服务器彼此交换数据前,必须先在双方之间建立一个TCP连接,之后才能传输数据.TCP提供超时重发,丢弃重复数据,检验数据,流量控制等功能,保证数据能从一端传到另一端的可靠传输.对可靠性要求较高的应用层协议,如FTP.Telnet.SMTP.HTTP.POP3 ②UDP---用户数据报协议,是一个简单的面向数据报的运输层协议.UDP不提供可靠性,它只是把应用程序传给IP层的数据报发送出去…
相对于SOCKET开发者,TCP创建过程和链接折除过程是由TCP/IP协议栈自动创建的.因此开发者并不需要控制这个过程.但是对于理解TCP底层运作机制,相当有帮助. TCP三次握手   所谓三次握手(Three-way Handshake),是指建立一个TCP连接时,需要客户端和服务器总共发送3个包.   三次握手的目的是连接服务器指定端口,建立TCP连接,并同步连接双方的序列号和确认号并交换 TCP 窗口大小信息.在socket编程中,客户端执行connect()时.将触发三次握手. 第一次握…
http://www.cnblogs.com/TankXiao/archive/2012/10/10/2711777.html 之前写过一篇博客:用 Fiddler 来调试HTTP,HTTPS. 这篇文章介绍另一个好用的抓包工具wireshark, 用来获取网络数据封包,包括http,TCP,UDP,等网络协议包. 记得大学的时候就学习过TCP的三次握手协议,那时候只是知道,虽然在书上看过很多TCP和UDP的资料,但是从来没有真正见过这些数据包, 老是感觉在云上飘一样,学得不踏实.有了wires…
在Linux的发行版本中,都存在一个/proc/目录,有的也称它为Proc文件系统.在 /proc 虚拟文件系统中存在一些可调节的内核参数.这个文件系统中的每个文件都表示一个或多个参数,它们可以通过 cat 工具进行读取,或使用 echo 命令进行修改.下面给出了几个可调节的参数是关于Linux TCP/IP 栈的参数,相关的帮助可以通过man tcp或info tcp获取.在这个目录中,包括了一些特殊的文件,不仅能用来反映内核的现行状态和查看硬件信息,而且,有些文件还允许用户来修改其中的内容,…
本文内容包括以下几点 1.TCP三次握手四次挥手解析 2.迭代型服务器程序编写,并给出客户端,结合这一模式详细介绍Berkeley套接字的使用 3.介绍SYN攻击的原理 TCP连接建立,传输数据,连接释放上层图解. 结合此图来说明SYN攻击.SYN攻击发生在TCP连接的第二个阶段,服务器确认客户端同步信息(SYN),用32位确认号(ACK)确认SYN信息. 可以提出这样一个假设,客户端(client)给服务器发syn之后就不存在了,那么第二次握手失败,服务器会根据预先设置的超时时间继续做第二次握…
今天被问到三次握手了,当时只是脑子里有印象,却忘了一些SYN细节,手动微笑. 这么下去还怎么混...赶紧复习个... 三次握手是什么? TCP是面向连接的,无论哪一方向另一方发送数据之前,都必须先在双方之间建立一条连接.在TCP/IP协议中,TCP协议提供可靠的连接服务,连接是通过三次握手进行初始化的.三次握手的目的是同步连接双方的序列号和确认号并交换 TCP窗口大小信息.这就是面试中经常会被问到的TCP三次握手.只是了解TCP三次握手的概念,对你获任何帮助的,你需要去了解TCP三次握手中的一些…
这篇文章介绍另一个好用的抓包工具 Wireshark, 用来获取网络数据封包,包括 HTTP.TCP.UDP 等网络协议包. 记得大学的时候就学习过TCP的三次握手协议,那时候只是知道,虽然在书上看过很多TCP和UDP的资料,但是从来没有真正见过这些数据包, 老是感觉在云上飘一样,学得不踏实.有了wireshark就能截获这些网络数据包,可以清晰的看到数据包中的每一个字段.更能加深我们对网络协议的理解.对我而言, wireshark 是学习网络协议最好的工具. 阅读目录 wireshark介绍…
三次握手 下图就是wireshark抓包工具抓获的TCP连接建立的三次握手过程: http://www.cnblogs.com/hnrainll/archive/2011/10/14/2212415.html 相对于SOCKET开发人员,TCP创建过程和链接折除过程是由TCP/IP协议栈自己主动创建的.因此开发人员并不须要控制这个过程.可是对于理解TCP底层运作机制,相当有帮助.      并且对于有网络协议project师之类笔试,差点儿是必考的内容.企业对这个问题热情之高,出乎我的意料:-)…
wireshark介绍 wireshark的官方下载网站: http://www.wireshark.org/ wireshark是非常流行的网络封包分析软件,功能十分强大.可以截取各种网络封包,显示网络封包的详细信息. wireshark是开源软件,可以放心使用. 可以运行在Windows和Mac OS上. 使用wireshark的人必须了解网络协议,否则就看不懂wireshark. Wireshark不能做的 为了安全考虑,wireshark只能查看封包,而不能修改封包的内容,或者发送封包.…
TCP数据包格式 顺序号(32位):用来标识从TCP源端向TCP目的端发送的数据字节流,它表示在这个报文段中的第一个数据字节的顺序号.如果将字节流看作在两个应用程序间的单向流动,则TCP用顺序号对每个字节进行计数.序号是32bit的无符号数,序号到达2^32-1后又从0开始.当建立一个新的连接时,SYN标志为1(该报文段不携带数据,但是要消耗一个序号),顺序号字段包含由这个主机选择的该连接的初始顺序号ISN(Initial Sequence Number). 确号(32位):包含发送确认的一端所…