bzoj1008 矩乘递推】的更多相关文章

2013-11-17 10:38 原题传送门http://www.lydsy.com/JudgeOnline/problem.php?id=1008 比较水的题,直接矩阵乘法+递推就OK了 w[i,0]代表i个人不越狱的方案, w[i,1]代表i个人越狱的方案, 那么有 w[i,1]:=w[i-1,0]+w[i-1,1]*m; w[i,0]:=w[i-1,0]*(m-1); 然后用矩阵乘法加速. 然后我们可以发现,w[i,0]就是(m-1)^(i-2)*m 那么n个人,一共有n^m种方案,减去w…
[NOI2017]泳池 实在没有思路啊~~~ luogu题解 1.差分,转化成至多k的概率减去至多k-1的概率.这样就不用记录“有没有出现k”这个信息了 2.n是1e9,感觉要递推然后利用数列的加速技巧 f[n]表示宽度为n的值,然后枚举最后一个连续高度至少为1的块,dp数组辅助 神仙dp:dp[i][j]表示宽度为i,j的高度出现限制,任意矩形不大于k的概率 设计确实巧妙:宽度利于转移给f,高度利于自己的转移 dp数组转移:枚举第一个到达j的限制的位置,这样,前面部分限制至少是j+1,后面至少…
[BZOJ4944][NOI2017]泳池(线性常系数齐次递推,动态规划) 首先恰好为\(k\)很不好算,变为至少或者至多计算然后考虑容斥. 如果是至少的话,我们依然很难处理最大面积这个东西.所以考虑答案至多为\(k\)的概率,再减去至多为\(k-1\)的概率就是最终的答案. 发现要求的东西必须贴着底边,所以对于每一列而言我们需要考虑的就是选定区间的最低的那个不安全的格子的行号,再乘上底边的长度. 所以考虑设\(f[n]\)表示底边长度为\(n\)的答案,即确定底边长度为\(n\)时,面积小于等…
传送门 解题思路 可以把原式移项得\(x\)^\(2x\)=\(3x\),而\(x+2x=3x\),说明\(x\)二进制下不能有两个连续的\(1\).那么第一问就是一个简单的数位\(dp\),第二问考虑递推按位做,设\(f(i)\)表示最后一位为\(0\)的答案,\(g(i)\)表示最后一位为\(1\)的答案,那么\(f(i)=g(i-1)+f(i-1)\),\(g(i)=f(i-1)\),整理一下发现\(f(i)=f(i-1)+f(i-2)\),就是斐波那契的形式,直接矩乘即可. 代码 #in…
定义 若数列 \(\{a_i\}\) 满足 \(a_n=\sum_{i=1}^kf_i \times a_{n-i}\) ,则该数列为 k 阶齐次线性递推数列 可以利用多项式的知识做到 \(O(k\log k \log n)\) 求第 n 项. 如果给出前 k 项,想知道 \(f_i\) ,可以在 \(O(k^2)\) 的时间内求出. 求 \(f_i\) 有 Berlekamp Massey 算法和 Reeds Sloane 算法,具体算法思想是啥咱也不知道,咱只知道这东西放进去就能跑. 前者需…
概述 系数为常数,递推项系数均为一次的,形如下面形式的递推式,称为线性递推方程. \[f[n]=\begin{cases} C &n\in Value\\ a_1 f[n-1]+a_2 f[n-2]+⋯a_t f[n-t]&n∉Value \end{cases}\] \((a_1,a_2,-,a_t,C∈\mathbb{R},0<t<n)\) 其中\(Value\)为终止条件的集合. 例如:斐波那契\((Fibonacci)\)数列则通过下面这个线性递推方程定义 \[f[n]=…
2476: 战场的数目 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 58  Solved: 38[Submit][Status][Discuss] Description Input 输入文件最多包含25组测试数据,每个数据仅包含一行,有一个整数p(1<=p<=109),表示战场的图形周长.p=0表示输入结束,你的程序不应当处理这一行. Output 对于每组数据,输出仅一行,即满足条件的战场总数除以987654321的余数. Sample I…
一.递推: 所谓递推,简单理解就是推导数列的通项公式.先举一个简单的例子(另一个NOI练习题,但不是这次要解的问题): 楼梯有n(100 > n > 0)阶台阶,上楼时可以一步上1阶,也可以一步上2阶,也可以一步上3阶,编程计算共有多少种不同的走法. 这个问题可以用递归来进行解决,但是解题时间1秒明显不够用.怎么办呢,可以考虑找到“规律”,然后推导公式解决问题,开始画图分析: 这是4个台阶时的全部7种走法,记作f(4)=7.现在观察右侧绿色走过的部分,1234四种情况是3个台阶时的4种走,法记…
Time limit: 1.0 second Memory limit: 64 MB On the Day of the Flag of Russia a shop-owner decided to decorate the show-window of his shop with textile stripes of white, blue and red colors. He wants to satisfy the following conditions: Stripes of the…
平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方法. Cayley-Hamilton theorem: 记矩阵A的特征多项式为f(x). 则有f(A)=0. 证明可以看 维基百科 https://en.wikipedia.org/wiki/Cayley–Hamilton_theorem#A_direct_algebraic_proof 另外我在高…