bzoj 1951 lucas crt 费马小定理】的更多相关文章

首先假设输入的是n,m 我们就是要求m^(Σ(c(n,i) i|n)) mod p 那么根据费马小定理,上式等于 m^(Σ(c(n,i) i|n) mod  (p-1)) mod p 那么问题的关键就是求 Σ(c(n,i) i|n) mod  (p-1)了 那么如果P是素数的话,我们可以用lucas定理来快速求出来组合数,这道题的p-1是 非素数,那么我们分解质因数pi,假设c(n,i) i|n为X,那我们求出来X mod pi=ai,这个是 符合lucas定理的,那么我们可以得到质因子数个式子…
题目链接 \(Description\) 给定N,G,求\[G^{\sum_{k|N}C_n^k}\mod\ 999911659\] \(Solution\) 由费马小定理,可以先对次数化简,即求\(\sum_{k|N}C_n^k\mod\ 99991168\),然后快速幂就可以解决. 可以把999911659分解成4个质因数,分别用Lucas定理求解然后用CRT合并即可. 要注意费马小定理成立的条件: a,p互质,即G!=mod. //1380kb 156ms #include <cmath>…
Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那边海的那边的某片风水宝地曾经存在过一个猪王国.猪王国地理位置偏僻,实施的是适应当时社会的自给自足的庄园经济,很少与外界联系,商贸活动就更少了.因此也很少有其他动物知道这样一个王国. 猪王国虽然不大,但是土地肥沃,屋舍俨然.如果一定要拿什么与之相比的话,那就只能是东晋陶渊明笔下的大家想象中的桃…
Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边海的那边的某片风水宝地曾经存在过一个猪王国.猪王国地理位置偏僻,实施的是适应当时社会的自给自足的庄园经济,很少与外界联系,商贸活动就更少了.因此也很少有其他动物知道这样一个王国. 猪王国虽然不大,但是土地肥沃,屋舍俨然.如果一定要拿什么与之相比的话,那就只能是东晋陶渊明笔下的大家想象中的桃花源了.猪…
嘿嘿嘿好久没写数学题了,偶尔看到一道写一写... 题目大意:一个(n+1)*(m+1)[0<=n, m<=10^12,n*m<=10^12]的矩阵,C(0,0)=1,C(x,y)=C(x-1,y)+C(x,y-1),求从0,0走到n,m路上最小权值(即为前面的C)和mod 10^9+7. 看到这个C(x,y)=C(x-1,y)+C(x,y-1),第一反应就是杨辉三角,所以这个矩阵其实就是一个由组合数组成的矩阵,第i行第j列的权值为C(i+j,j)[注意这个矩形起点是(0,0)]. 我们可…
题目描述 求  $g^{\sum\limits_{k|n}C_{n}^{\frac nk}}\mod 999911659$ 输入 有且仅有一行:两个数N.G,用一个空格分开. 输出 有且仅有一行:一个数,表示答案除以999911659的余数. 样例输入 4 2 样例输出 2048 题解 费马小定理+Lucas定理+中国剩余定理 首先由费马小定理$a^{p-1}\equiv 1\ \ (mod\ p)$,可以将模数转化到答案的指数上,即求$\sum\limits_{k|n}C_{n}^{\frac…
组合数学推推推最后,推得要求C(n+m,m)%p 其中n,m小于10^9,p小于1^5 用Lucas定理求(Lucas定理求nm较大时的组合数) 因为p数据较小可以直接阶乘打表求逆元 求逆元时,由费马小定理知道p为素数时,a^p-1=1modp可以写成a*a^p-2=1modp 所以a的逆元就是a^p-2, 可以求组合数C(n,m)%p中除法取模,将其转化为乘法取模 即    n!/(m!*(n-m)!)=n!*(m!*(n-m)!)^p-2 求C(n+m,m). n,m<=1000,二维数组递…
3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec   Memory Limit: 256 MB Submit: 123   Solved: 73 [ Submit][ Status] Description 婷婷是个喜欢矩阵的小朋友,有一天她想用电脑生成一个巨大的n行m列的矩阵(你不用担心她如何存储).她生成的这个矩阵满足一个神奇的性质:若用F[i][j]来表示矩阵中第i行第j列的元素,则F[i][j]满足下面的递推式: F[1][1]=1 F[i,j]=a*F[i]…
http://www.lydsy.com/JudgeOnline/problem.php?id=3398 以下牡牛为a,牝牛为b. 学完排列计数后试着来写这题,“至少”一词可以给我们提示,我们可以枚举a为x头(x>1),然后算出对应的排列累计起来. 对于x头a,首先我们先缩掉必要的k头牛(x-1)*k,然后这时可以特判可以先结束(因为单调的),然后在缩好后的x个点和n-x-(x-1)*k个点进行多重排列就行了. 只是遇到一个问题,多重排列有个除法,又要取模的QAQ,即(a/b)%m,怎么做呢..…
发现是一个快速幂,然而过不去. 怎么办呢? 1.十进制快速幂,可以用来练习卡时. 2.费马小定理,如果需要乘方的地方,可以先%(p-1)再计算,其他地方需要%p,所以需要保存两个数. 然后就是分类讨论a是否为1(等比数列求和时要求a不为1) 然后就是递推了. #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #d…