洛谷 P2523 [HAOI2011]Problem c】的更多相关文章

洛谷1或洛谷2,它们是一样的题目,手动滑稽- 这一题我是想不出来, 但是我想吐槽一下坐我左边的大佬. 大佬做题的时候,只是想了几分钟,拍了拍大腿,干脆的道:"这不是很显然吗!" 然后灵动地轻击键盘,不时抚弄头发,光速切紫题. AC后笑眯眯地对我说, 你要是想的出来,我给你买一瓶2L可口可乐!不是在打广告- 我当然难以下手,但2L杀***水非常诱惑. 还是冥思苦想了一番, 大佬看着着急,就告诉了我状态定义,还笑着说,告诉你你也想不出方程. 我很生气,但身为蒟蒻又能怎样呢? 在大佬的不断提…
题面 luogu 题解 首先,显然一个人实际位置只可能大于或等于编号 先考虑无解的情况 对于编号为\(i\),如果确认的人编号在\([i,n]\)中数量大于区间长度,那么就无解 记\(S[i]\)表示确认的人编号在\([i,n]\)中数量 我们只要考虑剩下的\(n - m\)人 \(f[i][j]\)表示编号\(>=i\)的,已经确认了\(j\)人 那么我们枚举多少人编号为\(i\) \(f[i][j] = \sum f[i + 1][j - k] * (^j_k)\) 因为交换一些人的编号也是…
正解:$dp$ 解题报告: 传送门$QwQ$ 首先港下不合法的情况.设$sum_i$表示$q\geq i$的人数,当且仅当$sum_i>n-i+1$时无解. 欧克然后考虑这题咋做$QwQ$. 一般的想法是枚人然后考虑给他啥编号.但是发现这样好像不太可做,所以考虑换一种思考方式. 考虑设$f_{i,j}$表示对于没安排的有$j$个人编号小于等于$i$的方案数 然后考虑转移,发现就枚给多少个人编号$i$就成.于是转移就$f_{i,j}=\sum f_{i+1,k}\cdot C(n-m-k,j-k)…
Portal Description 进行\(T(T\leq10^5)\)次询问,每次给出\(x_1,x_2,y_1,y_2\)和\(d\)(均不超过\(10^5\)),求\(\sum_{i=x_1}^{x_2} \sum_{j=y_1}^{y_2} [gcd(i,j)=d]\). Solution 莫比乌斯反演入门题. 设\(calc(n,m)\)表示\(i\in[1,n],j\in[1,m]\)且\(gcd(i,j)=d\)的数对\((i,j)\)的个数.那么简单地进行容斥,可知\(ans=…
传送门 我们考虑容斥,设$ans(a,b)=\sum_{i=1}^a\sum_{j=1}^b[gcd(a,b)==k]$,这个东西可以和这一题一样去算洛谷P3455 [POI2007]ZAP-Queries 然后只要在这上面加个容斥就好了,答案就是$ans(b,d)-ans(b,c-1)-ans(a-1,d)+ans(a-1,c-1)$ //minamoto #include<iostream> #include<cstdio> #define ll long long using…
题意:求$\sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)==k]$(1<=a,b,c,d,k<=50000). 是洛谷P3455 [POI2007]ZAP-Queries加强版,多了下界. 设$f(n,m)=\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==k]$ 根据容斥可以显然的得出Ans=f(b,d)-f(b,c-1)-f(a-1,d)+f(a-1,c-1). 对于f(n,m)的求解: $f(n,m)=\sum_{i=1}^{n}\…
传送门 考虑转化为求最多说真话的人数 设$f(i)$表示排名前$i$的人中最多说真话的人的数量,考虑转移,如果由$j$转移而来,可以设$[j,i]$之间的人全都分数相等,那么式子就是$f[i]=f[j-1]+sum([j,i])$,其中$sum([j,i])$表示处在这个区间的人数,全部分数相等,另外如果人数多于区间数,多出来的人都在说谎 //minamoto #include<bits/stdc++.h> #define mp(i,j) make_pair(i,j) using namesp…
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k 输出格式: 共n行,每行一个整数表示满足要求的数对(x,y)的个数 输入输出样例 输入样例#1: 复制 2 2 5 1 5 1 1 5 1 5 2 输出样例#1: 复制 14 3 说明 100%的数据满足:1≤n≤50000,1≤a≤b≤500…
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k 输出格式: 共n行,每行一个整数表示满足要求的数对(x,y)的个数 输入输出样例 输入样例#1: 复制 2 2 5 1 5 1 1 5 1 5 2 输出样例#1: 复制 14 3 说明 100%的数据满足:1≤n≤50000,1≤a≤b≤500…
正解:莫比乌斯反演 解题报告: 传送门! 首先看到这个显然就想到莫比乌斯反演$QwQ$? 就先瞎搞下呗$QwQ$ $gcd(x,y)=k$,即$gcd(\left \lfloor \frac{x}{k} \right \rfloor,\left \lfloor \frac{y}{k} \right \rfloor)=1$ 然后这个,虽然以前推过几次辣,,,但还是重新推下,,,太久没碰这些东西辣/$kel\ kel\ kel$ 设$F[k]$表示$gcd(x,y)$为$k$的倍数的数量,显然有$F…
P4137 Rmq Problem /mex 题意 给一个长为\(n(\le 10^5)\)的数列\(\{a\}\),有\(m(\le 10^5)\)个询问,每次询问区间的\(mex\) 可以莫队然后对值域分块,这样求\(mex\)的复杂度就正确了 一种更优的做法是按值域建可持久化线段树,对每个节点维护当前值域区间的最小出现位置,然后查询的时候就从\(r\)的那棵树一直尽量往左边走就好了 Code: #include <cstdio> #include <cstring> cons…
题目描述 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可是A国上层现在还犹豫不决,到底该把哪些城市作为保护对象呢?又由于A国的经费有限,所以希望你能帮忙完成如下的一个任务: 给出你所有的A国城市坐标 A国上层经过讨论,考虑到经济问题,决定取消对i城市的保护,也就是说i城市不需要在防线内了 A国上层询问对于剩下要保护的城市,修建防线的总经费最少是多少 你需要对每次询问作出回答.注意单位1长度的防线花费为1. A国的地形…
题目描述 有一个长度为n的数组{a1,a2,…,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. 输入输出格式 输入格式: 第一行n,m. 第二行为n个数. 从第三行开始,每行一个询问l,r. 输出格式: 一行一个数,表示每个询问的答案. 输入输出样例 输入样例#1: 复制 5 5 2 1 0 2 1 3 3 2 3 2 4 1 2 3 5 输出样例#1: 复制 1 2 3 0 3 说明 对于30%的数据:1<=n,m<=1000 对于100%的数据:1<=n,m<=2…
https://www.luogu.org/problemnew/show/P4137 只会log^2的带修主席树.. 看了题解,发现有高妙的一个log做法:权值线段树上,设数i对应的值ma[i]为数i首次出现的位置(没有出现就是n+1) 如果把询问按左端点排序,这样就转化为:修改:...:询问:询问[1,r]的答案 修改问题不大 询问[1,r]就转化为查询当前权值线段树上最小的数i,其对应的ma[i]>r:维护一下区间最大值,然后线段树上二分即可 可持久化一下线段树,还可以支持在线 ...好吧…
题面 首先,由于本人太菜,不会莫队,所以先采用主席树的做法: 离散化是必须环节,否则动态开点线段数都救不了你: 我们对于每个元素i,插入到1~(i-1)的主席树中,第i颗线段树(权值线段树)对于一个区间[l,r]维护的便是原序列1~i中的所有属于[l,r]的元素出现的最后位置的最小值: 当我们查询[x,y]时,我们查询第y颗线段树,找到第一个位置使得(出现的最后位置的最小值)比(x)要小: 然后恢复离散化之前的数值,然后输出: #include <bits/stdc++.h> #define…
传送门 先考虑如何判断无解,设 $sum[i]$ 表示确定的人中,编号大于 $i$ 的人的人数 如果 $sum[i]>n-i+1$ 则无解,进一步考虑设 $f[i][j]$ 表示当前确定完编号大于等于 $i$ 的人,除去原本固定的人还有 $j$ 人已经确定 那么有 $f[i][j]=\sum_{k=0}^{j}f[i+1][j-k] \cdot C_{j}^{k},j \in [0,n-i+1-sum[i]]$ 表示在确定 $j-k$ 人的编号的情况下,再选 $k$ 个人编号为 $i$,乘上组合…
洛谷1001 A+B Problem 本题地址:http://www.luogu.org/problem/show?pid=1001 题目描述 输入两个整数a,b,输出它们的和(|a|,|b|<=10^9).注意1.pascal使用integer会爆掉哦!2.有负数哦!3.c/c++的main函数必须是int类型,而且最后要return 0.这不仅对洛谷其他题目有效,而且也是noip/noi比赛的要求! 好吧,同志们,我们就从这一题开始,向着大牛的路进发.“任何一个伟大的思想,都有一个微不足道的…
洛谷P1919 [模板]A*B Problem升级版(FFT快速傅里叶) 刚学了FFT,我们来刷一道模板题. 题目描述 给定两个长度为 n 的两个十进制数,求它们的乘积. n<=100000 如果用 n^2 暴力,肯定会 TLE. 我们把这两个数看成一个多项式. f(x)=a0+a1*101+a2*102+a3*103+ ...... +an*10n 然后就可以愉快的FFT求解了!! #include<iostream> #include<cmath> #include<…
高精度加法的思路还是很简单容易理解的 A+B Problem(高精)[传送门] 洛谷算法标签: 附上代码(最近懒得一批) #include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #include<string> #include<cmath> using namespace std; int main() { ],b1[]; ],a[],b[]…
题目传送门 A*B problem 题目描述 给出两个n位10进制整数x和y,你需要计算x*y. 输入输出格式 输入格式: 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. 输出格式: 输出一行,即x*y的结果.(注意判断前导0) 输入输出样例 输入样例#1: 1 3 4 输出样例#1: 12 说明 数据范围: n<=60000 来源:bzoj2179 本题数据为洛谷自造数据,使用CYaRon耗时5分钟完成数据制作. 分析: 之前都是拿python水过…
洛谷1303 A*B Problem 本题地址:http://www.luogu.org/problem/show?pid=1303 题目描述 求两数的积. 输入输出格式 输入格式: 两个数 输出格式: 积 输入输出样例 输入样例#1: 1 2 输出样例#1: 2 说明 需用高精 题解 高精度 像高精度加减法运算一样,模拟乘法竖式运算.我们依然采取先计算后进位的策略. 1.输入与存储同加法运算. 2.结果的最大位数是两个因数的位数之和. 3.按照乘法竖式运算进行计算与进位. 4.输出之前处理最高…
洛谷1601 A+B Problem(高精) 本题地址:http://www.luogu.org/problem/show?pid=1601 题目背景 无 题目描述 高精度加法,x相当于a+b problem,不用考虑负数 输入输出格式 输入格式: 分两行输入a,b<=10^500 输出格式: 输出只有一行,代表A+B的值 输入输出样例 输入样例#1: 1 1 输出样例#1: 2 题解 高精度 题目非常简单,但数据规模却非常大,显然是常规数据类型无法承受的,因此不能用普通做法来完成这道题. 我们…
1.洛谷P1865 A % B Problem 题目背景 题目名称是吸引你点进来的 实际上该题还是很水的 题目描述 区间质数个数 输入输出格式 输入格式: 一行两个整数 询问次数n,范围m 接下来n行,每行两个整数 l,r 表示区间 输出格式: 对于每次询问输出个数 t,如l或r∉[1,m]输出 Crossing the line 输入输出样例 输入样例#1: 2 5 1 3 2 6 输出样例#1: 2 Crossing the line 说明 [数据范围和约定] 对于20%的数据 1<=n<…
洛谷题目传送门 顺便提一下题意有一个地方不太清楚,就是如果输出No还要输出最少需要添加多少张牌才能满足要求.蒟蒻考完以后发现四个点Too short on line 2... 比较需要技巧的搜索 既然是同一个花色要连续,那就枚举每一个花色在哪一段区间连续并选中四个区间,累计每个点数的选中次数. 最后来一个\(O(13)\)的\(\text{check}\),首先每个点数选中次数要不少于已有的个数.接着,只有所有点数的选中次数和已有点数相等时,才能判为'Yes',然后统计某张牌的花色的区间未包含这…
洛谷题目传送门 貌似做所有的DP题都要先搞出暴力式子,再往正解上靠... 设\(f_{i,j}\)为前\(i\)个数分\(j\)段的最小花费,\(w_{l,r}\)为\([l,r]\)全在一段的费用. \[f_{i,j}=\min\limits_{k=1}^{i}\{f_{k,j-1}+w_{k,i}\}\] 显然\(j\)这一维可以滚掉,于是变成\(g_i=\min\limits_{k=1}^{i}\{f_k+w_{k,i}\}\)做\(m\)遍(题目中的\(k\)) 这又是一个决策单调性优化…
题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 //n位*n位最多就只有2n位了 //putchar的速度..还是快的 #include <cmath> #include <cstdio> #include <cctype> #include <algorithm> #define gc() getchar(…
题目描述 输入两个整数a,b,输出它们的和(|a|,|b|<=10^9). 注意 1.pascal使用integer会爆掉哦! 2.有负数哦! 3.c/c++的main函数必须是int类型,而且最后要return 0.这不仅对洛谷其他题目有效,而且也是noip/noi比赛的要求! 好吧,同志们,我们就从这一题开始,向着大牛的路进发. “任何一个伟大的思想,都有一个微不足道的开始.” 输入输出格式 输入格式: 两个整数以空格分开 输出格式: 一个数 输入输出样例 输入样例#1: 20 30 输出样…
题目描述 给出两个n位10进制整数x和y,你需要计算x*y. 输入输出格式 输入格式: 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. 输出格式: 输出一行,即x*y的结果.(注意判断前导0) 输入输出样例 输入样例#1: 复制 1 3 4 输出样例#1: 复制 12 说明 数据范围: n<=60000 来源:bzoj2179 本题数据为洛谷自造数据,使用CYaRon耗时5分钟完成数据制作. emmmm感觉学了FFT没什么乱用啊,, 也就来水一水这种…
[BZOJ2302][HAOI2011]Problem C(动态规划) 题面 BZOJ 洛谷 题解 首先如果\(m=0\)即没有特殊限制的话,那么就和这道题目基本上是一样的. 然而这题也有属于这题的性质,发现座位数和人数是一样的. 那么一种方案是合法的,当且仅当编号小于等于这个位置\(i\)的人数不小于\(i\). 首先把不合法直接判掉,考虑存在合法状态的情况. 设\(f[i][j]\)表示有\(j\)个人的编号小于等于\(i\)的方案数.显然\(i\le j\). 考虑如何转移,我们显然从\(…
先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000,1\leq k\leq n,m\leq 50000$ 暴力做法 $O(Tnm\log\max(n,m))$ 不用说了,那有没有什么更好的做法呢? 我们定义一种函数叫莫比乌斯函数 $\mu$,它的定义是: 当 $n=1$ 时,$\mu(n)=1$ 当 $n$ 可以分解成 $p_1p_2...p_k$…