多层感知机MLP的gluon版分类minist】的更多相关文章

MLP_Gluon .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .tab…
肯定有人要说什么多层感知机,不就是几个隐藏层连接在一起的吗.话是这么说,但是我觉得我们首先要自己承认自己高级,不然怎么去说服(hu nong)别人呢 from keras.models import Sequential from keras.layers import Dense import numpy as np #设置随机种子,使得每次结果都是一致的 np.random.seed(7) import pandas as pd dataFrame = pd.read_csv("E:/数据集…
先记录一下一开始学习torch时未曾记录(也未好好弄懂哈)导致又忘记了的tensor.variable.计算图 计算图 计算图直白的来说,就是数学公式(也叫模型)用图表示,这个图即计算图.借用 https://hzzone.io/cs231n/%E7%90%86%E8%A7%A3-PyTorch-%E8%AE%A1%E7%AE%97%E5%9B%BE%E3%80%81Autograd-%E6%9C%BA%E5%88%B6%E5%92%8C%E5%AE%9E%E7%8E%B0%E7%BA%BF%E…
from mxnet import gluon,init from mxnet.gluon import loss as gloss, nn from mxnet.gluon import data as gdata from mxnet import nd,autograd import gluonbook as gb import sys # 读取数据 # 读取数据 mnist_train = gdata.vision.FashionMNIST(train=True) mnist_test…
from __future__ import print_function # 导入numpy库, numpy是一个常用的科学计算库,优化矩阵的运算 import numpy as np np.random.seed(1337) # 导入mnist数据库, mnist是常用的手写数字库 from keras.datasets import mnist # 导入顺序模型 from keras.models import Sequential # 导入全连接层Dense, 激活层Activation…
Multilayer Perceptron (MLP) for multi-class softmax classification: from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.optimizers import SGD # 生成随机数据 import numpy as np x_train = np.random.random((1000,…
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只是机器学习的一分支领域,它更强调从连续的层中进行学习,这种层级结构中的每一层代表不同程序的抽象,层级越高,抽象程度越大.这些层主要通过神经网络的模型学习得到的,最大的模型会有上百层之多.而最简单的神经网络分为输入层,中间层(中间层往往会包含多个隐藏层),输出层.下面几篇文章将分别从前馈神经网络 FNN.卷积神…
隐含层,指除输入.输出层外,的中间层.输入.输出层对外可见.隐含层对外不可见.理论上,只要隐含层节点足够多,只有一个隐含层,神经网络可以拟合任意函数.隐含层越多,越容易拟合复杂函数.拟合复杂函数,所需隐含节点数,随隐含层数量增多指数下降. 过拟合,模型预测准确率在训练集上升,在测试集下降.泛化性不好,模型记忆当前数据特征,不具备推广能力.参数太多.Hinton教授团队,Dropout.随便丢弃部分输出数据节点.创造新随机样本,增大样本量,减少特征数量,防止过拟合.bagging方法,对特征新种采…
Alink漫谈(十五) :多层感知机 之 迭代优化 目录 Alink漫谈(十五) :多层感知机 之 迭代优化 0x00 摘要 0x01 前文回顾 1.1 基本概念 1.2 误差反向传播算法 1.3 总体逻辑 0x02 训练神经网络 2.1 初始化模型 2.2 压缩数据 2.3 生成优化目标函数 2.4 生成目标函数中的拓扑模型 2.4.1 AffineLayerModel 2.4.2 FuntionalLayerModel 2.4.3 SoftmaxLayerModelWithCrossEntr…
Alink漫谈(十四) :多层感知机 之 总体架构 目录 Alink漫谈(十四) :多层感知机 之 总体架构 0x00 摘要 0x01 背景概念 1.1 前馈神经网络 1.2 反向传播 1.3 代价函数 1.4 优化过程 1.4.1 迭代法 1.4.2 梯度下降 1.5 相关公式 1.5.1 加权求和 h 1.5.2 神经元输出值 a 1.5.3 输出层的输出值 y 1.5.4 激活函数g(h) 1.5.5 损失函数E 1.5.6 误差反向传播--更新权重 1.5.7 输出层增量项 δo 1.5…