stn,spatial transformer network总结】的更多相关文章

对整篇paper的一个总结:https://blog.csdn.net/xbinworld/article/details/69049680 github:1.https://github.com/Dive-frank/caffe_stn 有prototxt,并且prototxt看起来写的还不错 2.https://github.com/christopher5106/last_caffe_with_stn,最原始的用caffe写stn的 stn就是一个模块,可以加在任何两个卷积之间,是无监督学…
url: https://arxiv.org/abs/1506.02025 year:2015 blog: https://kevinzakka.github.io/2017/01/10/stn-part1/ https://kevinzakka.github.io/2017/01/18/stn-part2/ code: https://github.com/kevinzakka/spatial-transformer-network Introduce 卷积神经网络定义了一类特别强大的模型,但…
https://blog.csdn.net/yaoqi_isee/article/details/72784881 Abstract: 作者说明了CNN对于输入的数据缺乏空间变换不变形(lack of spatially invariant ability to input data),因此作者引入了一个spatial transformer module,不需要额外的监督,能够以data-driven的方式学习得到输入图像的空间变换参数,赋予网络spatial invariant能力. Int…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.机器学习技术感兴趣的同学加入. 今天具体介绍一个Google DeepMind在15年提出的Spatial Transformer Networks,相当于在传统的一层Convolution中间,装了一个"插件",可以使得传统的卷积带有了[裁剪].[平移].[缩放].[旋转]等特性:理论上,作者希望可以减少CNN的训练数据量,以及减少做data a…
Spatial Transformer Networks 简介 本文提出了能够学习feature仿射变换的一种结构,并且该结构不需要给其他额外的监督信息,网络自己就能学习到对预测结果有用的仿射变换.因为CNN的平移不变性等空间特征一定程度上被pooling等操作破坏了,所以,想要网络能够应对平移的object或者其他仿射变换后的object有更好的表示,就需要设计一种结构来学习这种变换,使得作用了这种变换后的feature能够能好的表示任务. 网络结构 上图中U表示输入feature map,通…
Reference:Spatial Transformer Networks [Google.DeepMind]Reference:[Theano源码,基于Lasagne] 闲扯:大数据不如小数据 这是一份很新的Paper(2015.6),来自于Google旗下的新锐AI公司DeepMind的四位剑桥Phd研究员. 他们针对CNN的特点,构建了一个新的局部网络层,称为空间变换层,如其名,它能将输入图像做任意空间变换. 在我的论文[深度神经网络在面部情感分析系统中的应用与改良]中,提出了一个有趣观…
大致看了看这个paper, 很novel. 我的观点: 在traditional convolutional neural netwoks 中,我们通常会depend 于 extracting features.       而本paper把 hand-crafted 和 feature extraction 结合在了一起,用于处理 invariance of various inputs. spatial transformer 可以包括:平移.旋转.放缩等操作.      在数学上的名称有:…
2015, NIPS Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu Google DeepMind 为什么提出(Why) 一个理想中的模型:我们希望鲁棒的图像处理模型具有空间不变性,当目标发生某种转化后,模型依然能给出同样的正确的结果 什么是空间不变性:举例来说,如下图所示,假设一个模型能准确把左图中的人物分类为凉宫春日,当这个目标做了放大.旋转.平移后,模型仍然能够正确分类,我们就说这个模型在这个任务上具有…
理解Spatial Transformer Networks 转载于:知乎-SIGAI 书的购买链接 书的勘误,优化,源代码资源 获取全文PDF请查看:理解Spatial Transformer Networks 概述 随着深度学习的不断发展,卷积神经网络(CNN)作为计算机视觉领域的杀手锏,在几乎所有视觉相关任务中都展现出了超越传统机器学习算法甚至超越人类的能力.一系列CNN-based网络在classification.localization.semantic segmentation.a…
Optical Flow Estimation using a Spatial Pyramid Network   spynet  本文将经典的 spatial-pyramid formulation 和 deep learning 的方法相结合,以一种 coarse to fine approach,进行光流的计算.This estiamates large motions in a coarse to fine approach by warping one image of a pair…