storm(2)-机制】的更多相关文章

一.前述 Storm容错机制相比其他的大数据组件做的非常不错. 二.具体原因 结合Storm集群架构图: 我们的程序提交流程如下:   其中各个组件的作用如下: Nimbus资源调度任务分配接收jar包 Supervisor接收nimbus分配的任务启动.停止自己管理的worker进程(当前supervisor上worker数量由配置文件设定) Worker运行具体处理运算组件的进程(每个Worker对应执行一个Topology的子集)worker任务类型,即spout任务.bolt任务两种启动…
一.任务执行及通信的单元 Storm中关于任务执行及通信的三个概念:Worker(进程).Executor(线程)和Task(Spout.Bolt) 1.  一个worker进程执行的是一个Topology的子集(不会出现一个worker进程为多个Topology服务),一个worker进程会启动一个或多个executor线程来执行一个topology的component(Spout或Bolt),因此,一个运行中的topology就是由集群中多台物理机上的多个worker进程组成的: 2.  E…
本文可作为 <<Storm-分布式实时计算模式>>一书1.4节的读书笔记 在Storm中,一个task就可以理解为在集群中某个节点上运行的一个spout或者bolt实例. 记住一个task是一个实例. 实例明白吧 Class Person 是一个类, persona,personb都是Person的一个实例. 在集群运行运行中,topology主要有四个组成部分. 他们从低到高分别是task(bolt/spout实例),Executor(线程),Workers(JVM虚拟机),No…
Worker间的通信:经常需要通过网络跨节点进行,Storm使用ZeroMQ或Netty(0.9以后默认使用)作为进程间通信的消息框架. Worker进程内部通信:不同worker的thread通信使用LMAX Disruptor来完成. 不同topologey之间的通信:Storm不负责,需要自己想办法实现,例如使用kafka等: 1.worker进程间的通信 worker进程间消息传递机制,消息的接收和处理的大概流程见下图: 对于worker进程来说,为了管理流入和传出的消息,每个worke…
一.storm的并发 (1)Workers(JVMs):在一个物理节点上可以运行一个或多个独立的JVM进程.一个Topology可以包含一个或多个worker(并行的跑在不同的物理机上),所以worker process就是执行一个topology的子集, 并且worker只能对应于一个topology (2)Executors(threads):在一个workerJVM进程中运行着多个Java线程.一个executor线程可以执行一个或多个tasks.但一般默认每个executor只执行一个t…
一 可靠性简单介绍                    Storm的可靠性是指Storm会告知用户每个消息单元是否在一个指定的时间(timeout)内被全然处理. 全然处理的意思是该MessageId绑定的源Tuple以及由该源Tuple衍生的全部Tuple都经过了Topology中每个应该到达的Bolt的处理. 注: timetout 能够通过Config.TOPOLOGY_MESSAGE_TIMEOUT_SECS 来指定        Storm中的每个Topology中都包括有一个Ack…
一.前述 为了提高Storm的并行能力,通常需要设置并行. 二.具体原理 1. Storm并行分为几个方面: Worker – 进程一个Topology拓扑会包含一个或多个Worker(每个Worker进程只能从属于一个特定的Topology)这些Worker进程会并行跑在集群中不同的服务器上,即一个Topology拓扑其实是由并行运行在Storm集群中多台服务器上的进程所组成 Executor – 线程Executor是由Worker进程中生成的一个线程每个Worker进程中会运行拓扑当中的一…
转载请注明原创地址http://www.cnblogs.com/dongxiao-yang/p/6142356.html Storm 的拓扑有一些特殊的称为"acker"的任务,这些任务负责跟踪每个 Spout 发出的 tuple 的 DAG.开启storm tracker机制的前提有三个: 1. 在spout emit tuple的时候,要加上第3个参数messageid 2. 在配置中acker数目至少为1 3. 在bolt emit的时候,要加上第二个参数anchor tuple…
转自:http://www.cnblogs.com/fxjwind/p/3806404.html 之前对这个的理解有些问题,今天用到有仔细梳理了一遍,记录一下 首先开启storm tracker机制的前提是, 1. 在spout emit tuple的时候,要加上第3个参数messageid 2. 在配置中acker数目至少为1 3. 在bolt emit的时候,要加上第二个参数anchor tuple,以保持tracker链路 流程, 1. 当tuple具有messageid时,spout会把…
Storm与Spark:谁才是我们的实时处理利器 ——实时商务智能目前已经逐步迈入主流,而Storm与Spark开源项目的支持无疑在其中起到了显著的推动作用.那么问题来了:实时处理到底哪家强? 实时商务智能这一构想早已算不得什么新生事物(早在2006年维基百科中就出现了关于这一概念的页面).然而尽管人们多年来一直在对此类方案进行探讨,我却发现很多企业实际上尚未就此规划出明确发展思路.甚至没能真正意识到其中蕴含的巨大效益. 为什么会这样?一大原因在于目前市场上的实时商务智能与分析工具仍然非常有限.…