4.2.2 总排序(Total order sorting) 有的时候需要将作业的的所有输出进行总排序,使各个输出之间的结果是有序的.有以下实例: 如果要得到某个网站中最受欢迎的网址(URL),就需要根据某种受欢迎的指标来对网址进行排序. 如果要让最活跃的用户能够看到某张表,就需要根据某种标准(发表文章数)对用户进行排序. 技术22 在多个reduce间对键进行排序 在MapReduce框架中,map的输出会被排序,然后被发送给reduce.不过,相同reduce的输入数据是有序的,不同redu…
4.2 排序(SORT) 在MapReduce中,排序的目的有两个: MapReduce可以通过排序将Map输出的键分组.然后每组键调用一次reduce. 在某些需要排序的特定场景中,用户可以将作业(job)的全部输出进行总体排序. 例如:需要了解前N个最受欢迎的用户或网页的数据分析工作. 在这一节中,有两个场景需要对MapReduce的排序行为进行优化. 次排序(Secondary sort) 总排序(Total order sorting) 次排序可以根据reduce的键对它的值进行排序.如…
原书章节 原书章节题目 翻译文章序号 翻译文章题目 链接 4.1 Joining Hadoop(1) MapReduce 连接:重分区连接(Repartition join) http://www.cnblogs.com/datacloud/p/3578509.html 4.1.1 Repartition join Hadoop(1) MapReduce 连接:重分区连接(Repartition join) http://www.cnblogs.com/datacloud/p/3578509.h…
6.4.6 优化数据序列化 如何存储和传输数据对性能有很大的影响.在这部分将介绍数据序列化的最佳实践,从Hadoop中榨出最大的性能. 压缩压缩是Hadoop优化的重要部分.通过压缩可以减少作业输出数据的储存足迹,加速MapReduce作业下游接收数据.另外,在map和reduce之间的数据需要被压缩以减轻网络IO的压力.压缩技术的具体内容在第5章中介绍. 二进制文件格式 使用二进制文件格式,如Avro和SequenceFile,可以使数据的表达更为紧凑,并提高编组(marshalling)和逆…
6.2.3 Reduce的性能问题 Reduce的性能问题有和map类似的方面,也有和map不同的方面.图6.13是reduce任务的具体的执行各阶段,标识了可能影响性能的区域. 这一章将介绍影响reduce任务性能的常见问题. 技术33 Reduce实例不足或过多 尽管map段的并行化程度在大部分情况下是自动设置的,但是在reduce端,reduce实例的数量是完全自定义的.如果reduce实例不足或过多,集群的性能就很难得到充分发挥. 问题 需要确定reduce实例的数量是否是作业运行缓慢的…
4.1.4 为你的数据选择最佳连接策略 已介绍的每个连接策略都有不同的优点和缺点.那么,怎么来判断哪个最适合待处理的数据? 图4.11给出了一个决策树.这个决策树是于论文<A Comparison of Join Algorithms>中提到的一个决策树的改进版本. 图4.11中的决策树可以归纳为以下三点: 如果数据集中有一个足够小到可以放到map的内存中,那么map端的复制连接就足够了. 如果每个数据集都很大,同时其中一个数据集可以在经过一定条件过滤以后大幅度地减小,那么半连接将会很有效.…
6.4.3 优化洗牌(shuffle)和排序阶段 洗牌和排序阶段都很耗费资源.洗牌需要在map和reduce任务之间传输数据,会导致过大的网络消耗.排序和合并操作的消耗也是很显著的.这一节将介绍一系列的技术来缓解洗牌和排序阶段的消耗. 技术46 规避使用reduce Reduce在用于连接数据集的时候将会产生大量的网络消耗. 问题 需要考虑在MapReduce规避reduce的使用. 方案 通过将MapReduce参数setNumReduceTasks设置为0来创建一个只有map的作业. 讨论…
5.2 基于压缩的高效存储(续) (仅包括技术27) 技术27 在MapReduce,Hive和Pig中使用可分块的LZOP 如果一个文本文件即使经过压缩后仍然比HDFS的块的大小要大,就需要考虑选择一个支持分块的压缩编码器,以防一个单一的map任务来处理整个超大的文件. LZOP可以满足分块的要求,但是使用起来很复杂.原因在于LZOP不是直接支持分块.LZOP是基于块的格式,但是并不支持块的随机访问. 问题 需要选择一个压缩编码器使MapReduce可以调用多个任务并行处理一个单一的压缩文件.…
5.2 基于压缩的高效存储 (仅包括技术25,和技术26) 数据压缩可以减小数据的大小,节约空间,提高数据传输的效率.在处理文件中,压缩很重要.在处理Hadoop的文件时,更是如此.为了让Hadoop更高效处理文件,就需要选择一个合适的压缩编码器,加快作业运行,增加集群的数据存储能力. 技术25 为待处理数据选择正确的压缩编码器在HDFS上使用压缩并不像ZFS文件系统上那样透明,特别是在处理那些可分块的压缩文件时.(这些将在本章中稍后介绍.)由于Avro和SequenceFiles等文件格式提供…
4.1.3 半连接(Semi-join) 假设一个场景,需要连接两个很大的数据集,例如,用户日志和OLTP的用户数据.任何一个数据集都不是足够小到可以缓存在map作业的内存中.这样看来,似乎就不能使用reduce端的连接了.尽管不是必须,可以思考以下问题:如果在数据集的连接操作中,一个数据集中有的记录由于因为无法连接到另一个数据集的记录,将会被移除.这样还需要将整个数据集放到内存中吗?在这个例子中,在用户日志中的用户仅仅是OLTP用户数据中的用户中的很小的一部分.那么就可以从OLTP用户数据中只…