Spark Streaming揭秘 Day10 从BlockGenerator看接收数据的生命周期 昨天主要介绍了SparkStreaming中对于Receiver的生命周期管理,下面让我们进入到Receiver内部,研究下其工作机制. 首先,先总结下SparkStreaming中接收数据的特点: 数据需要不间断的按照次序接收 由于在driver中需要保存元数据,在存储数据之后,需要不断汇报给driver 让我们进入接收数据关键的BlockGenerator进行分析. Block概念 Block…
Spark Streaming揭秘 Day28 在集成开发环境中详解Spark Streaming的运行日志内幕 今天会逐行解析一下SparkStreaming运行的日志,运行的是WordCountOnline这个Demo. 启动过程 SparkStreaming启动是从如下日志开始: 16/06/16 21:26:44 INFO ReceiverTracker: Starting 1 receivers 16/06/16 21:26:44 INFO ReceiverTracker: Recei…
Spark Streaming揭秘 Day18 空RDD判断及程序中止机制 空RDD的处理 从API我们可以知道在SparkStreaming中,对于RDD的操作一般都是在foreachRDD和Transform方法里. 在使用foreachRDD时,有一个风险,就是如果RDD为空可能会导致计算失败,那么应用如何来判断为空呢? 方法1:使用RDD.count count方法会直接触发一个Job,代价有些大 方法2:调用RDD.paritions.isEmpty 我们可以看到partitions是…
Spark Streaming揭秘 Day34 解析UI监听模式 今天分享下SparkStreaming中的UI部分,和所有的UI系统一样,SparkStreaming中的UI系统使用的是监听器模式.监听器模式是指,首先注册事件源,当事件或者数据发生改变时,监听器就会接收到这个改变,并对这种改变做出响应,监听器模式可以简单的理解为一种MVC的模式. SparkStreaming中的UI系统有两个非常的支持,就是处理时间process time和Batch等待时间Scheduler Delay.一…
Spark Streaming揭秘 Day33 checkpoint的使用 今天谈下sparkstreaming中,另外一个至关重要的内容Checkpoint. 首先,我们会看下checkpoint的使用.另外,会看下在应用程序重新启动时,是如何处理checkpoint的. Checkpoint保存什么 checkpoint作为容错的设计,基本思路是把当前运行的状态,保存在容错的存储系统中(一般是hdfs).对于容错的处理,肯定是围绕作业紧密相关的,保存内容包括元数据和数据两部分. 从元数据角度…
Spark Streaming揭秘 Day32 WAL框架及实现 今天会聚焦于SparkStreaming中非常重要的数据安全机制WAL(预写日志). 设计要点 从本质点说,WAL框架是一个存储系统,可以简单的认为是一个文件系统,其作用类似于BlockManager, 我们首先看一下官方的说明: 这里有三个要点: 总体上,sparksteaming是用WAL去保存接收到的数据,并且在写入数据后,要把元数据汇报给Driver,这样失败了才能恢复起来. 每当写入一个log,就返回一个handle,h…
Spark Streaming揭秘 Day30 集群模式下SparkStreaming日志分析 今天通过集群运行模式观察.研究和透彻的刨析SparkStreaming的日志和web监控台. Day28已经分析过local模式下的日志,集群模式会比较类似,这次主要是对集群模式在的web监控台,进行统一的深度刨析. 我们从wordcount程序开始,代码如下,为了展示出SparkStreaming在集群中的运行,Batch Duration设置为5分钟. 系统作业 为了观察持续运行的情况,我们运行了…
Spark Streaming揭秘 Day19 架构设计和运行机制 今天主要讨论一些SparkStreaming设计的关键点,也算做个小结. DStream设计 首先我们可以进行一个简单的理解:DStream就是加上时间维度的RDD.RDD的模板是DStream,DAG的模板是DStreamGraph,RDD的依赖关系就是DStream的依赖关系. 但是,从DStream的设计来看,我们会发现,DStream的操作和RDD并不是一一对应的,DStream并不直接支持join.orderBy等操作…
Spark Streaming揭秘 Day9 从Receiver的设计到Spark框架的扩展 Receiver是SparkStreaming的输入数据来源,从对Receiver整个生命周期的设计,我们可以充分领略到Spark框架设计之巧妙,废话少说,让我们来看代码. 解决的问题 在开始之前,让我们先明确一个概念,就是Receiver于inputDStream之间的关系,从如下代码中,我们可以看到,receiver其实是由inputDStream映射得到的,也就是说Receiver和inputDS…
Spark Streaming揭秘 Day1 三大谜团 引子 在Spark的众多组件中,Streaming最接近企业级应用程序,学习Spark Streaming,是掌握大数据技术的一条捷径.今天是第一节课,让我们从头开始.本系列内容都是基于Spark1.6.1版本. 根据Quick Example (Batch Interval需设置为30秒)运行一个Spark Streaming程序,然后进行观察. 谜团一:5个Job? 从Demo代码来看,仅调用了print方法,一次action触发应该调…