svm、经验风险最小化、vc维】的更多相关文章

原文:http://blog.csdn.net/keith0812/article/details/8901113 “支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上” 结构化风险 结构化风险 = 经验风险 + 置信风险 经验风险 =  分类器在给定样本上的误差 置信风险 = 分类器在未知文本上分类的结果的误差 置信风险因素: 样本数量,给定的样本数量越大,学习结果越有可能正确,此时置信风险越小: 分类函数的VC维,显然VC维越大,推广能力越差,置信风险会变大. 提高样本…
VC维在有限的训练样本情况下,当样本数 n 固定时.此时学习机器的 VC 维越高学习机器的复杂性越高. VC 维反映了函数集的学习能力,VC 维越大则学习机器越复杂(容量越大). 所谓的结构风险最小化就是在保证分类精度(经验风险)的同一时候,减少学习机器的 VC 维,能够使学习机器在整个样本集上的期望风险得到控制. 经验风险和实际风险之间的关系,注意引入这个原因是什么? 由于训练误差再小也就是在这个训练集合上,实际的推广能力不行就会引起过拟合问题. 所以说要引入置信范围也就是经验误差和实际期望误…
一.逻辑回归是什么? 1.逻辑回归 逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的. logistic回归也称为逻辑回归,与线性回归这样输出是连续的.具体的值(如具体房价123万元)不同,逻辑回归的输出是0~1之间的概率,但可以把它理解成回答“是”或者“否”(即离散的二分类)的问题.回答“是”可以用标签“1”表示,回答“否”可以用标签“0”表示. 比如,逻辑回归的输出是“某人生病的概率是多少”,我们可以进一步理解成“某人是否生病了”.设…
一.经验风险最小化 1.有限假设类情形 对于Chernoff bound 不等式,最直观的解释就是利用高斯分布的图象.而且这个结论和中心极限定律没有关系,当m为任意值时Chernoff bound均成立,但是中心极限定律不一定成立. 随着模型复杂度(如多项式的次数.假设类的大小等)的增长,训练误差逐渐降低,而一般误差先降低到最低点再重新增长.训练误差降低,是因为模型越复杂,对于训练集合的拟合就越好.对于一般误差,最左边的端点表示欠拟合(高偏差),最右边的端点表示过拟合(高方差),最小化一般误差时…
写在前面:机器学习的目标是从训练集中得到一个模型,使之能对测试集进行分类,这里,训练集和测试集都是分布D的样本.而我们会设定一个训练误差来表示测试集的拟合程度(训练误差),虽然训练误差具有一定的参考价值.但实际上,我们并不关心对训练集合的预测有多么准确.我们更关心的是对于我们之前没有见过的一个全新的测试集进行测试时,如果利用这个模型来判断,会表现出怎么样的性能,即一般误差.因此,这也要求我们的模型需要具备一定的泛化能力.泛化能力弱,就会出现欠拟合与过拟合的情况. 偏差/方差(Bias/varia…
实在写不动了,将word文档转换为PDF直接截图了... 版权声明:本文为博主原创文章,未经博主允许不得转载.…
以下文章转载自http://blog.sina.com.cn/s/blog_7103b28a0102w9tr.html 如有侵权,请留言,立即删除. 1 VC维的描述和理解 给定一个集合S={x1,x2,...xd},如果一个假设类H(hypothesis h ∈ H)能够实现集合S中所有元素的任意一种标记方式,则称H能够打散S.有了打散的定义,就得到VC维的定义:H的VC维表示能够被H打散的最大集合的大小.若H能分散任意大小的集合,那么VC(H)为无穷大. ​VC维反应的是hypothesis…
前言: 经历过文本的特征提取,使用LibSvm工具包进行了测试,Svm算法的效果还是很好的.于是开始逐一的去了解SVM的原理. SVM 是在建立在结构风险最小化和VC维理论的基础上.所以这篇只介绍关于SVM的理论基础.参考this paper: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/svmtutorial.pdf 目录: 文本分类学习(一)开篇 文本分类学习(二)文本表示 文本分类学习(三)特征权重…
本文转载自 火光摇曳 原文链接:VC维的来龙去脉 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number of Hypotheses Growth Function Break Point与Shatter VC Bound VC dimension 深度学习与VC维 小结 参考文献 VC维在机器学习领域是一个很基础的概念,它给诸多机器学习方法的可学习性提供了坚实的理论基础,但有时候,特别是对我们工程师而言…
VC维的来龙去脉——转载自“火光摇曳” 在研究VC维的过程中,发现一篇写的很不错的VC维的来龙去脉的文章,以此转载进行学习. 原文链接,有兴趣的可以参考原文进行研究学习 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number of Hypotheses Growth Function Break Point与Shatter VC Bound VC dimension 深度学习与VC维 小结 参考文献 VC…